Matches in SemOpenAlex for { <https://semopenalex.org/work/W3105254518> ?p ?o ?g. }
- W3105254518 endingPage "3735" @default.
- W3105254518 startingPage "3735" @default.
- W3105254518 abstract "Gross primary production (GPP) is the overall photosynthetic fixation of carbon per unit space and time. Due to uncertainties resulting from clouds, snow, aerosol, and topography, it is a challenging task to accurately estimate daily GPP. Daily digital photos from a phenological camera record vegetation daily greenness dynamics with little cloud or aerosol disturbance. It can be fused with satellite remote sensing data to improve daily GPP prediction accuracy. In this study, we combine the two types of datasets to improve the estimation accuracy of GPP for alpine meadow on the Tibetan Plateau. To examine the performance of different methods and vegetation indices (VIs), three experiments were designed. First, GPP was estimated with the light use efficiency (LUE) model with the green chromatic coordinate (GCC) from the phenological camera and vegetation index from MODIS, respectively. Second, GPP was estimated with the Backpropagation neural network machine learning algorithm (BNNA) method with GCC from the phenological camera and vegetation index from MODIS, respectively. Finally, GPP was estimated with the BNNA method using GCC and vegetation index as inputs at the same time. Compared with eddy covariance GPP, GPP predicted by the BNNA method with GCC and vegetation indices as inputs at the same time showed the highest accuracy of all the experiments. The results indicated that GCC had a higher accuracy than NDVI and EVI when only one vegetation index data was used in the LUE model or the BNNA method. The R2 of GPP estimated by BNNA and GPP from eddy covariance increased by 0.12 on average, RMSE decreased by 1.13 g C·m−2·day−1 on average, and MAD decreased by 0.87 g C·m−2·day−1 on average compared with GPP estimated by the traditional LUE model and GPP from eddy covariance. This study puts forth a new way to improve the estimation accuracy of GPP on the Tibetan Plateau. With the emergence of a large number of phenological cameras, this method has great potential for use on the Tibetan Plateau, which is heavily affected by clouds and snow." @default.
- W3105254518 created "2020-11-23" @default.
- W3105254518 creator A5002647615 @default.
- W3105254518 creator A5006592543 @default.
- W3105254518 creator A5022802322 @default.
- W3105254518 creator A5044314141 @default.
- W3105254518 creator A5063758996 @default.
- W3105254518 date "2020-11-13" @default.
- W3105254518 modified "2023-09-27" @default.
- W3105254518 title "Combining Phenological Camera Photos and MODIS Reflectance Data to Predict GPP Daily Dynamics for Alpine Meadows on the Tibetan Plateau" @default.
- W3105254518 cites W1057605271 @default.
- W3105254518 cites W1963908600 @default.
- W3105254518 cites W1966138788 @default.
- W3105254518 cites W1967208965 @default.
- W3105254518 cites W1971813093 @default.
- W3105254518 cites W1982024602 @default.
- W3105254518 cites W2011010318 @default.
- W3105254518 cites W2011976351 @default.
- W3105254518 cites W2016270348 @default.
- W3105254518 cites W2017691148 @default.
- W3105254518 cites W2022727148 @default.
- W3105254518 cites W2025424387 @default.
- W3105254518 cites W2038927660 @default.
- W3105254518 cites W2050567885 @default.
- W3105254518 cites W2056301837 @default.
- W3105254518 cites W2057802193 @default.
- W3105254518 cites W2069981052 @default.
- W3105254518 cites W2071032644 @default.
- W3105254518 cites W2073746712 @default.
- W3105254518 cites W2087547956 @default.
- W3105254518 cites W2094693879 @default.
- W3105254518 cites W2113848424 @default.
- W3105254518 cites W2114456168 @default.
- W3105254518 cites W2122324234 @default.
- W3105254518 cites W2130797201 @default.
- W3105254518 cites W2131956716 @default.
- W3105254518 cites W2135241051 @default.
- W3105254518 cites W2140440859 @default.
- W3105254518 cites W2142967622 @default.
- W3105254518 cites W2145931897 @default.
- W3105254518 cites W2154700052 @default.
- W3105254518 cites W2158897782 @default.
- W3105254518 cites W2164574849 @default.
- W3105254518 cites W2165551322 @default.
- W3105254518 cites W2167891208 @default.
- W3105254518 cites W2205407824 @default.
- W3105254518 cites W2343034256 @default.
- W3105254518 cites W2574299844 @default.
- W3105254518 cites W2589890164 @default.
- W3105254518 cites W2611941915 @default.
- W3105254518 cites W2626455041 @default.
- W3105254518 cites W2736644580 @default.
- W3105254518 cites W2791153522 @default.
- W3105254518 cites W2891022374 @default.
- W3105254518 cites W2913379467 @default.
- W3105254518 cites W2916269533 @default.
- W3105254518 cites W2929349101 @default.
- W3105254518 cites W2999850262 @default.
- W3105254518 cites W3003903541 @default.
- W3105254518 cites W3011802690 @default.
- W3105254518 cites W3011937997 @default.
- W3105254518 cites W3028415160 @default.
- W3105254518 cites W367115991 @default.
- W3105254518 doi "https://doi.org/10.3390/rs12223735" @default.
- W3105254518 hasPublicationYear "2020" @default.
- W3105254518 type Work @default.
- W3105254518 sameAs 3105254518 @default.
- W3105254518 citedByCount "1" @default.
- W3105254518 countsByYear W31052545182023 @default.
- W3105254518 crossrefType "journal-article" @default.
- W3105254518 hasAuthorship W3105254518A5002647615 @default.
- W3105254518 hasAuthorship W3105254518A5006592543 @default.
- W3105254518 hasAuthorship W3105254518A5022802322 @default.
- W3105254518 hasAuthorship W3105254518A5044314141 @default.
- W3105254518 hasAuthorship W3105254518A5063758996 @default.
- W3105254518 hasBestOaLocation W31052545181 @default.
- W3105254518 hasConcept C110872660 @default.
- W3105254518 hasConcept C127313418 @default.
- W3105254518 hasConcept C142724271 @default.
- W3105254518 hasConcept C153294291 @default.
- W3105254518 hasConcept C1549246 @default.
- W3105254518 hasConcept C18903297 @default.
- W3105254518 hasConcept C205649164 @default.
- W3105254518 hasConcept C24717449 @default.
- W3105254518 hasConcept C25989453 @default.
- W3105254518 hasConcept C2776133958 @default.
- W3105254518 hasConcept C2780376076 @default.
- W3105254518 hasConcept C35187779 @default.
- W3105254518 hasConcept C39432304 @default.
- W3105254518 hasConcept C49204034 @default.
- W3105254518 hasConcept C51417038 @default.
- W3105254518 hasConcept C62649853 @default.
- W3105254518 hasConcept C6557445 @default.
- W3105254518 hasConcept C71924100 @default.
- W3105254518 hasConcept C78869512 @default.
- W3105254518 hasConcept C86803240 @default.
- W3105254518 hasConcept C91586092 @default.
- W3105254518 hasConceptScore W3105254518C110872660 @default.