Matches in SemOpenAlex for { <https://semopenalex.org/work/W3105265498> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W3105265498 abstract "An old conjecture of Erdős and Rényi, proved by Schinzel, predicted a bound for the number of terms of a polynomial <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=g left-parenthesis x right-parenthesis element-of double-struck upper C left-bracket x right-bracket> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>C</mml:mi> </mml:mrow> <mml:mo stretchy=false>[</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=false>]</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>g(x)in mathbb {C}[x]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> when its square <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=g left-parenthesis x right-parenthesis squared> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>x</mml:mi> <mml:msup> <mml:mo stretchy=false>)</mml:mo> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>g(x)^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has a given number of terms. Further conjectures and results arose, but some fundamental questions remained open. In this paper, with methods which appear to be new, we achieve a final result in this direction for completely general algebraic equations <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f left-parenthesis x comma g left-parenthesis x right-parenthesis right-parenthesis equals 0> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>f(x,g(x))=0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f left-parenthesis x comma y right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>f(x,y)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is monic of arbitrary degree in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=y> <mml:semantics> <mml:mi>y</mml:mi> <mml:annotation encoding=application/x-tex>y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and has boundedly many terms in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=x> <mml:semantics> <mml:mi>x</mml:mi> <mml:annotation encoding=application/x-tex>x</mml:annotation> </mml:semantics> </mml:math> </inline-formula>: we prove that the number of terms of such a <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=g left-parenthesis x right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>g(x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is necessarily bounded. This includes the previous results as extremely special cases. We shall interpret polynomials with boundedly many terms as the restrictions to 1-parameter subgroups or cosets of regular functions of bounded degree on a given torus <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper G Subscript m Superscript l> <mml:semantics> <mml:msubsup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>G</mml:mi> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mtext>m</mml:mtext> </mml:mrow> <mml:mi>l</mml:mi> </mml:msubsup> <mml:annotation encoding=application/x-tex>mathbb {G}_textrm {m}^l</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Such a viewpoint shall lead to some best-possible corollaries in the context of finite covers of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper G Subscript m Superscript l> <mml:semantics> <mml:msubsup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>G</mml:mi> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mtext>m</mml:mtext> </mml:mrow> <mml:mi>l</mml:mi> </mml:msubsup> <mml:annotation encoding=application/x-tex>mathbb {G}_textrm {m}^l</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, concerning the structure of their integral points over function fields (in the spirit of conjectures of Vojta) and a Bertini-type irreducibility theorem above algebraic multiplicative cosets. A further natural reading occurs in non-standard arithmetic, where our result translates into an algebraic and integral-closedness statement inside the ring of non-standard polynomials." @default.
- W3105265498 created "2020-11-23" @default.
- W3105265498 creator A5017792265 @default.
- W3105265498 creator A5062319671 @default.
- W3105265498 creator A5013466753 @default.
- W3105265498 date "2017-03-01" @default.
- W3105265498 modified "2023-10-08" @default.
- W3105265498 title "On fewnomials, integral points, and a toric version of Bertini’s theorem" @default.
- W3105265498 cites W1171185518 @default.
- W3105265498 cites W1579005859 @default.
- W3105265498 cites W1587054906 @default.
- W3105265498 cites W1980962844 @default.
- W3105265498 cites W1982065400 @default.
- W3105265498 cites W2010931795 @default.
- W3105265498 cites W2023709953 @default.
- W3105265498 cites W2028829270 @default.
- W3105265498 cites W2049816316 @default.
- W3105265498 cites W2066838126 @default.
- W3105265498 cites W2088440750 @default.
- W3105265498 cites W2324465849 @default.
- W3105265498 cites W2334029858 @default.
- W3105265498 cites W2963966611 @default.
- W3105265498 cites W4213358012 @default.
- W3105265498 cites W4250375092 @default.
- W3105265498 cites W627825455 @default.
- W3105265498 doi "https://doi.org/10.1090/jams/878" @default.
- W3105265498 hasPublicationYear "2017" @default.
- W3105265498 type Work @default.
- W3105265498 sameAs 3105265498 @default.
- W3105265498 citedByCount "7" @default.
- W3105265498 countsByYear W31052654982017 @default.
- W3105265498 countsByYear W31052654982019 @default.
- W3105265498 countsByYear W31052654982020 @default.
- W3105265498 countsByYear W31052654982021 @default.
- W3105265498 crossrefType "journal-article" @default.
- W3105265498 hasAuthorship W3105265498A5013466753 @default.
- W3105265498 hasAuthorship W3105265498A5017792265 @default.
- W3105265498 hasAuthorship W3105265498A5062319671 @default.
- W3105265498 hasBestOaLocation W31052654981 @default.
- W3105265498 hasConcept C11413529 @default.
- W3105265498 hasConcept C154945302 @default.
- W3105265498 hasConcept C33923547 @default.
- W3105265498 hasConcept C41008148 @default.
- W3105265498 hasConceptScore W3105265498C11413529 @default.
- W3105265498 hasConceptScore W3105265498C154945302 @default.
- W3105265498 hasConceptScore W3105265498C33923547 @default.
- W3105265498 hasConceptScore W3105265498C41008148 @default.
- W3105265498 hasFunder F4320321181 @default.
- W3105265498 hasLocation W31052654981 @default.
- W3105265498 hasLocation W31052654982 @default.
- W3105265498 hasLocation W31052654983 @default.
- W3105265498 hasOpenAccess W3105265498 @default.
- W3105265498 hasPrimaryLocation W31052654981 @default.
- W3105265498 hasRelatedWork W1979597421 @default.
- W3105265498 hasRelatedWork W2007980826 @default.
- W3105265498 hasRelatedWork W2061531152 @default.
- W3105265498 hasRelatedWork W2069964982 @default.
- W3105265498 hasRelatedWork W2386767533 @default.
- W3105265498 hasRelatedWork W2748952813 @default.
- W3105265498 hasRelatedWork W2899084033 @default.
- W3105265498 hasRelatedWork W3002753104 @default.
- W3105265498 hasRelatedWork W4225152035 @default.
- W3105265498 hasRelatedWork W4245490552 @default.
- W3105265498 isParatext "false" @default.
- W3105265498 isRetracted "false" @default.
- W3105265498 magId "3105265498" @default.
- W3105265498 workType "article" @default.