Matches in SemOpenAlex for { <https://semopenalex.org/work/W3105301818> ?p ?o ?g. }
- W3105301818 endingPage "2835" @default.
- W3105301818 startingPage "2687" @default.
- W3105301818 abstract "For each finite dimensional, simple, complex Lie algebra $mathfrak g$ and each root of unity $xi$ (with some mild restriction on the order) one can define the Witten-Reshetikhin-Turaev (WRT) quantum invariant $tau_M^{mathfrak g}(xi)in mathbb C$ of oriented 3-manifolds $M$. In the present paper we construct an invariant $J_M$ of integral homology spheres $M$ with values in the cyclotomic completion $widehat {mathbb Z [q]}$ of the polynomial ring $mathbb Z [q]$, such that the evaluation of $J_M$ at each root of unity gives the WRT quantum invariant of $M$ at that root of unity. This result generalizes the case ${mathfrak g}=sl_2$ proved by the first author. It follows that $J_M$ unifies all the quantum invariants of $M$ associated with $mathfrak g$, and represents the quantum invariants as a kind of analytic function defined on the set of roots of unity. For example, $tau_M(xi)$ for all roots of unity are determined by a Taylor expansion at any root of unity, and also by the values at infinitely many roots of unity of prime power orders. It follows that WRT quantum invariants $tau_M(xi)$ for all roots of unity are determined by the Ohtsuki series, which can be regarded as the Taylor expansion at $q=1$, and hence by the Le-Murakami-Ohtsuki invariant. Another consequence is that the WRT quantum invariants $tau_M^{ mathfrak g}(xi)$ are algebraic integers. The construction of the invariant $J_M$ is done on the level of quantum group, and does not involve any finite dimensional representation, unlike the definition of the WRT quantum invariant. Thus, our construction gives a unified, representation-free definition of the quantum invariants of integral homology spheres." @default.
- W3105301818 created "2020-11-23" @default.
- W3105301818 creator A5018027659 @default.
- W3105301818 creator A5024859920 @default.
- W3105301818 date "2016-10-07" @default.
- W3105301818 modified "2023-09-24" @default.
- W3105301818 title "Unified quantum invariants for integral homology spheres associated with simple Lie algebras" @default.
- W3105301818 cites W1539091812 @default.
- W3105301818 cites W1565930783 @default.
- W3105301818 cites W1568393038 @default.
- W3105301818 cites W1591908005 @default.
- W3105301818 cites W1640121896 @default.
- W3105301818 cites W1653201141 @default.
- W3105301818 cites W1661352576 @default.
- W3105301818 cites W1928687705 @default.
- W3105301818 cites W1964400499 @default.
- W3105301818 cites W1966028892 @default.
- W3105301818 cites W1968435887 @default.
- W3105301818 cites W1979854521 @default.
- W3105301818 cites W1980020027 @default.
- W3105301818 cites W1983060363 @default.
- W3105301818 cites W1985759733 @default.
- W3105301818 cites W1985872803 @default.
- W3105301818 cites W1986790428 @default.
- W3105301818 cites W1988032111 @default.
- W3105301818 cites W1989497783 @default.
- W3105301818 cites W1992046515 @default.
- W3105301818 cites W1997352557 @default.
- W3105301818 cites W2007185418 @default.
- W3105301818 cites W2009718167 @default.
- W3105301818 cites W2012541283 @default.
- W3105301818 cites W2014242183 @default.
- W3105301818 cites W2021133847 @default.
- W3105301818 cites W2025971338 @default.
- W3105301818 cites W2027044855 @default.
- W3105301818 cites W2032831677 @default.
- W3105301818 cites W2033129059 @default.
- W3105301818 cites W2036369778 @default.
- W3105301818 cites W2038025412 @default.
- W3105301818 cites W2039105785 @default.
- W3105301818 cites W2044088860 @default.
- W3105301818 cites W2044624490 @default.
- W3105301818 cites W2047874779 @default.
- W3105301818 cites W2056954154 @default.
- W3105301818 cites W2057165756 @default.
- W3105301818 cites W2058248235 @default.
- W3105301818 cites W2068735216 @default.
- W3105301818 cites W2078490514 @default.
- W3105301818 cites W2079720203 @default.
- W3105301818 cites W2080743555 @default.
- W3105301818 cites W2085927301 @default.
- W3105301818 cites W2088353214 @default.
- W3105301818 cites W2091253256 @default.
- W3105301818 cites W2092231910 @default.
- W3105301818 cites W2102179138 @default.
- W3105301818 cites W2114629298 @default.
- W3105301818 cites W2129637966 @default.
- W3105301818 cites W2135033092 @default.
- W3105301818 cites W2143536508 @default.
- W3105301818 cites W2159557053 @default.
- W3105301818 cites W2159880416 @default.
- W3105301818 cites W2171632106 @default.
- W3105301818 cites W2314507527 @default.
- W3105301818 cites W2324826203 @default.
- W3105301818 cites W2501116869 @default.
- W3105301818 cites W2947597058 @default.
- W3105301818 cites W2962676993 @default.
- W3105301818 cites W2962872174 @default.
- W3105301818 cites W3099662773 @default.
- W3105301818 cites W3100210966 @default.
- W3105301818 cites W3105366953 @default.
- W3105301818 cites W4210755439 @default.
- W3105301818 cites W4229761747 @default.
- W3105301818 cites W4232622816 @default.
- W3105301818 cites W4234736639 @default.
- W3105301818 cites W4239903295 @default.
- W3105301818 cites W4244887162 @default.
- W3105301818 cites W4247117274 @default.
- W3105301818 cites W4248577164 @default.
- W3105301818 doi "https://doi.org/10.2140/gt.2016.20.2687" @default.
- W3105301818 hasPublicationYear "2016" @default.
- W3105301818 type Work @default.
- W3105301818 sameAs 3105301818 @default.
- W3105301818 citedByCount "6" @default.
- W3105301818 countsByYear W31053018182017 @default.
- W3105301818 countsByYear W31053018182019 @default.
- W3105301818 countsByYear W31053018182020 @default.
- W3105301818 countsByYear W31053018182021 @default.
- W3105301818 countsByYear W31053018182023 @default.
- W3105301818 crossrefType "journal-article" @default.
- W3105301818 hasAuthorship W3105301818A5018027659 @default.
- W3105301818 hasAuthorship W3105301818A5024859920 @default.
- W3105301818 hasBestOaLocation W31053018182 @default.
- W3105301818 hasConcept C104317684 @default.
- W3105301818 hasConcept C114614502 @default.
- W3105301818 hasConcept C121332964 @default.
- W3105301818 hasConcept C165525559 @default.
- W3105301818 hasConcept C185592680 @default.