Matches in SemOpenAlex for { <https://semopenalex.org/work/W3105322534> ?p ?o ?g. }
- W3105322534 endingPage "671" @default.
- W3105322534 startingPage "651" @default.
- W3105322534 abstract "Abstract Vitrinite reflectance (VR) is considered the most used maturity indicator of source rocks. Although vitrinite reflectance is an acceptable parameter for maturity and is widely used, it is sometimes difficult to measure. Furthermore, Rock-Eval pyrolysis is a current technique for geochemical investigations and evaluating source rock by their quality and quantity of organic matter, which provide low cost, quick, and valid information. Predicting vitrinite reflectance by using a quick and straightforward method like Rock-Eval pyrolysis results in determining accurate and reliable values of VR with consuming low cost and time. Previous studies used empirical equations for vitrinite reflectance prediction by the T max data, which was accompanied by poor results. Therefore, finding a way for precise vitrinite reflectance prediction by Rock-Eval data seems useful. For this aim, vitrinite reflectance values are predicted by 15 distinct machine learning models of the decision tree, random forest, support vector machine, group method of data handling, radial basis function, multilayer perceptron, adaptive neuro-fuzzy inference system, and multilayer perceptron and adaptive neuro-fuzzy inference system, which are coupled with evolutionary optimization methods such as grasshopper optimization algorithm, bat algorithm, particle swarm optimization, and genetic algorithm, with four inputs of Rock-Eval pyrolysis parameters of T max , S 1 /TOC, HI, and depth for the first time. Statistical evaluations indicate that the decision tree is the most precise model for VR prediction, which can estimate vitrinite reflectance precisely. The comparison between the decision tree and previous proposed empirical equations indicates that the machine learning method performs much more accurately." @default.
- W3105322534 created "2020-11-23" @default.
- W3105322534 creator A5034016037 @default.
- W3105322534 creator A5048101134 @default.
- W3105322534 creator A5064498330 @default.
- W3105322534 date "2020-11-18" @default.
- W3105322534 modified "2023-10-17" @default.
- W3105322534 title "Prediction of vitrinite reflectance values using machine learning techniques: a new approach" @default.
- W3105322534 cites W1547540587 @default.
- W3105322534 cites W1781917695 @default.
- W3105322534 cites W1885981601 @default.
- W3105322534 cites W1965556176 @default.
- W3105322534 cites W1971796595 @default.
- W3105322534 cites W1978973074 @default.
- W3105322534 cites W1998430709 @default.
- W3105322534 cites W1999539552 @default.
- W3105322534 cites W2001651429 @default.
- W3105322534 cites W2007628258 @default.
- W3105322534 cites W2019207321 @default.
- W3105322534 cites W2022264324 @default.
- W3105322534 cites W2023592993 @default.
- W3105322534 cites W2031825752 @default.
- W3105322534 cites W2044042163 @default.
- W3105322534 cites W2077385741 @default.
- W3105322534 cites W2083514704 @default.
- W3105322534 cites W2085730657 @default.
- W3105322534 cites W2091147615 @default.
- W3105322534 cites W2119215839 @default.
- W3105322534 cites W2119855749 @default.
- W3105322534 cites W2148596671 @default.
- W3105322534 cites W2155261478 @default.
- W3105322534 cites W2163379324 @default.
- W3105322534 cites W2210392634 @default.
- W3105322534 cites W2256322079 @default.
- W3105322534 cites W2489158050 @default.
- W3105322534 cites W2493851929 @default.
- W3105322534 cites W2528475167 @default.
- W3105322534 cites W2570995264 @default.
- W3105322534 cites W2585392941 @default.
- W3105322534 cites W2735629142 @default.
- W3105322534 cites W2781957474 @default.
- W3105322534 cites W2791399137 @default.
- W3105322534 cites W2883390229 @default.
- W3105322534 cites W2887470299 @default.
- W3105322534 cites W2891085567 @default.
- W3105322534 cites W2896034036 @default.
- W3105322534 cites W2903545171 @default.
- W3105322534 cites W2910952482 @default.
- W3105322534 cites W2914046321 @default.
- W3105322534 cites W2914545661 @default.
- W3105322534 cites W2916018064 @default.
- W3105322534 cites W2943521617 @default.
- W3105322534 cites W2951677584 @default.
- W3105322534 cites W2955079094 @default.
- W3105322534 cites W2961504393 @default.
- W3105322534 cites W2963103847 @default.
- W3105322534 cites W2977492684 @default.
- W3105322534 cites W2978074096 @default.
- W3105322534 cites W2978859412 @default.
- W3105322534 cites W2994148135 @default.
- W3105322534 cites W3004745992 @default.
- W3105322534 cites W3005026044 @default.
- W3105322534 cites W3017232925 @default.
- W3105322534 cites W3094837136 @default.
- W3105322534 cites W3105346980 @default.
- W3105322534 cites W4232576780 @default.
- W3105322534 cites W4253135314 @default.
- W3105322534 cites W4312921313 @default.
- W3105322534 doi "https://doi.org/10.1007/s13202-020-01043-8" @default.
- W3105322534 hasPublicationYear "2020" @default.
- W3105322534 type Work @default.
- W3105322534 sameAs 3105322534 @default.
- W3105322534 citedByCount "8" @default.
- W3105322534 countsByYear W31053225342021 @default.
- W3105322534 countsByYear W31053225342022 @default.
- W3105322534 countsByYear W31053225342023 @default.
- W3105322534 crossrefType "journal-article" @default.
- W3105322534 hasAuthorship W3105322534A5034016037 @default.
- W3105322534 hasAuthorship W3105322534A5048101134 @default.
- W3105322534 hasAuthorship W3105322534A5064498330 @default.
- W3105322534 hasBestOaLocation W31053225341 @default.
- W3105322534 hasConcept C109007969 @default.
- W3105322534 hasConcept C119857082 @default.
- W3105322534 hasConcept C12267149 @default.
- W3105322534 hasConcept C127313418 @default.
- W3105322534 hasConcept C151730666 @default.
- W3105322534 hasConcept C153180895 @default.
- W3105322534 hasConcept C154945302 @default.
- W3105322534 hasConcept C186108316 @default.
- W3105322534 hasConcept C195975749 @default.
- W3105322534 hasConcept C199289684 @default.
- W3105322534 hasConcept C2777101687 @default.
- W3105322534 hasConcept C41008148 @default.
- W3105322534 hasConcept C58166 @default.
- W3105322534 hasConcept C84525736 @default.
- W3105322534 hasConcept C85617194 @default.
- W3105322534 hasConceptScore W3105322534C109007969 @default.
- W3105322534 hasConceptScore W3105322534C119857082 @default.