Matches in SemOpenAlex for { <https://semopenalex.org/work/W3105335904> ?p ?o ?g. }
- W3105335904 endingPage "234" @default.
- W3105335904 startingPage "203" @default.
- W3105335904 abstract "The all-order construction of the pinch technique gluon self-energy and quark–gluon vertex is presented in detail within the class of linear covariant gauges. The main ingredients in our analysis are the identification of a special Green function, which serves as a common kernel to all self-energy and vertex diagrams, and the judicious use of the Slavnov–Taylor identity it satisfies. In particular, it is shown that the ghost-Green functions appearing in this identity capture precisely the result of the pinching action at arbitrary order. By virtue of this observation the construction of the quark–gluon vertex becomes particularly compact. It turns out that the aforementioned ghost-Green functions play a crucial role, their net effect being the non-trivial modification of the ghost diagrams of the quark–gluon vertex in such a way as to reproduce dynamically the characteristic ghost sector of the background field method. The gluon self-energy is also constructed following two different procedures. First, an indirect derivation is given, by resorting to the strong induction method and the assumption of the uniqueness of the S-matrix. Second, an explicit construction based on the intrinsic pinch technique is provided, using the Slavnov–Taylor identity satisfied by the all-order three-gluon vertex nested inside the self-energy diagrams. The process independence of the gluon self-energy is also demonstrated, by using gluons instead of quarks as external test particles, and identifying the corresponding kernel function, together with its Slavnov–Taylor identity. Finally, the general methodology for carrying out the renormalization of the resulting Green functions is outlined, and various open questions are briefly discussed." @default.
- W3105335904 created "2020-11-23" @default.
- W3105335904 creator A5063083647 @default.
- W3105335904 creator A5080063676 @default.
- W3105335904 date "2004-01-14" @default.
- W3105335904 modified "2023-09-27" @default.
- W3105335904 title "Pinch technique self-energies and vertices to all orders in perturbation theory" @default.
- W3105335904 cites W1497285868 @default.
- W3105335904 cites W151641746 @default.
- W3105335904 cites W1556533740 @default.
- W3105335904 cites W1625053673 @default.
- W3105335904 cites W1963966452 @default.
- W3105335904 cites W1965387212 @default.
- W3105335904 cites W1965442453 @default.
- W3105335904 cites W1965610756 @default.
- W3105335904 cites W1966892228 @default.
- W3105335904 cites W1974512611 @default.
- W3105335904 cites W1975163186 @default.
- W3105335904 cites W1975893766 @default.
- W3105335904 cites W1976017456 @default.
- W3105335904 cites W1981495504 @default.
- W3105335904 cites W1986269862 @default.
- W3105335904 cites W1993486223 @default.
- W3105335904 cites W1993523852 @default.
- W3105335904 cites W1994176311 @default.
- W3105335904 cites W1996341546 @default.
- W3105335904 cites W1999359203 @default.
- W3105335904 cites W2000529854 @default.
- W3105335904 cites W2000617979 @default.
- W3105335904 cites W2000825016 @default.
- W3105335904 cites W2005300826 @default.
- W3105335904 cites W2005555631 @default.
- W3105335904 cites W2012590513 @default.
- W3105335904 cites W2012728593 @default.
- W3105335904 cites W2014136321 @default.
- W3105335904 cites W2016939318 @default.
- W3105335904 cites W2022220531 @default.
- W3105335904 cites W2026721748 @default.
- W3105335904 cites W2028534480 @default.
- W3105335904 cites W2032159452 @default.
- W3105335904 cites W2032989271 @default.
- W3105335904 cites W2037780549 @default.
- W3105335904 cites W2043370421 @default.
- W3105335904 cites W2045634663 @default.
- W3105335904 cites W2048259584 @default.
- W3105335904 cites W2052073354 @default.
- W3105335904 cites W2053136962 @default.
- W3105335904 cites W2054285863 @default.
- W3105335904 cites W2060373179 @default.
- W3105335904 cites W2061854535 @default.
- W3105335904 cites W2061897360 @default.
- W3105335904 cites W2062836347 @default.
- W3105335904 cites W2064014766 @default.
- W3105335904 cites W2068718390 @default.
- W3105335904 cites W2076345023 @default.
- W3105335904 cites W2078483812 @default.
- W3105335904 cites W2080500755 @default.
- W3105335904 cites W2082686564 @default.
- W3105335904 cites W2083407626 @default.
- W3105335904 cites W2083942447 @default.
- W3105335904 cites W2084480984 @default.
- W3105335904 cites W2085177264 @default.
- W3105335904 cites W2085715848 @default.
- W3105335904 cites W2085721523 @default.
- W3105335904 cites W2088601854 @default.
- W3105335904 cites W2100118430 @default.
- W3105335904 cites W2105732080 @default.
- W3105335904 cites W2107136162 @default.
- W3105335904 cites W2116659902 @default.
- W3105335904 cites W2116792163 @default.
- W3105335904 cites W2116840860 @default.
- W3105335904 cites W2121580548 @default.
- W3105335904 cites W2122186317 @default.
- W3105335904 cites W2146098945 @default.
- W3105335904 cites W2152756890 @default.
- W3105335904 cites W2156032720 @default.
- W3105335904 cites W2156682843 @default.
- W3105335904 cites W2158783750 @default.
- W3105335904 cites W2161600334 @default.
- W3105335904 cites W2162431392 @default.
- W3105335904 cites W2170144948 @default.
- W3105335904 cites W2170279816 @default.
- W3105335904 cites W2171170438 @default.
- W3105335904 cites W2172949211 @default.
- W3105335904 cites W2173270779 @default.
- W3105335904 cites W2177148917 @default.
- W3105335904 cites W2182848026 @default.
- W3105335904 cites W2737181389 @default.
- W3105335904 cites W2740364605 @default.
- W3105335904 cites W3100139997 @default.
- W3105335904 cites W3101852293 @default.
- W3105335904 cites W3102898098 @default.
- W3105335904 cites W3105563012 @default.
- W3105335904 cites W4250991733 @default.
- W3105335904 cites W2096849761 @default.
- W3105335904 doi "https://doi.org/10.1088/0954-3899/30/2/017" @default.
- W3105335904 hasPublicationYear "2004" @default.
- W3105335904 type Work @default.