Matches in SemOpenAlex for { <https://semopenalex.org/work/W3105385664> ?p ?o ?g. }
- W3105385664 endingPage "105" @default.
- W3105385664 startingPage "87" @default.
- W3105385664 abstract "Identifying directed interactions between species from time series of their population densities has many uses in ecology. This key statistical task is equivalent to causal time series inference, which connects to the Granger causality (GC) concept: $x$ causes $y$ if $x$ improves the prediction of $y$ in a dynamic model. However, the entangled nature of nonlinear ecological systems has led to question the appropriateness of Granger causality, especially in its classical linear Multivariate AutoRegressive (MAR) model form. Convergent-cross mapping (CCM), a nonparametric method developed for deterministic dynamical systems, has been suggested as an alternative. Here, we show that linear GC and CCM are able to uncover interactions with surprisingly similar performance, for predator-prey cycles, 2-species deterministic (chaotic) or stochastic competition, as well as 10- and 20-species interaction networks. There is no correspondence between the degree of nonlinearity of the dynamics and which method performs best. Our results therefore imply that Granger causality, even in its linear MAR($p$) formulation, is a valid method for inferring interactions in nonlinear ecological networks; using GC or CCM (or both) can instead be decided based on the aims and specifics of the analysis." @default.
- W3105385664 created "2020-11-23" @default.
- W3105385664 creator A5002648105 @default.
- W3105385664 creator A5026440231 @default.
- W3105385664 creator A5035840808 @default.
- W3105385664 creator A5036451788 @default.
- W3105385664 date "2020-11-16" @default.
- W3105385664 modified "2023-10-13" @default.
- W3105385664 title "Inferring species interactions using Granger causality and convergent cross mapping" @default.
- W3105385664 cites W1543409689 @default.
- W3105385664 cites W1636081627 @default.
- W3105385664 cites W1752598806 @default.
- W3105385664 cites W1819075170 @default.
- W3105385664 cites W1884954933 @default.
- W3105385664 cites W1920817623 @default.
- W3105385664 cites W1971971946 @default.
- W3105385664 cites W1981547652 @default.
- W3105385664 cites W1982363149 @default.
- W3105385664 cites W1983021753 @default.
- W3105385664 cites W1991799868 @default.
- W3105385664 cites W1994337026 @default.
- W3105385664 cites W1998367480 @default.
- W3105385664 cites W2017519329 @default.
- W3105385664 cites W2019459021 @default.
- W3105385664 cites W2025371899 @default.
- W3105385664 cites W2027394199 @default.
- W3105385664 cites W2039459999 @default.
- W3105385664 cites W2041782669 @default.
- W3105385664 cites W2045954141 @default.
- W3105385664 cites W2047116672 @default.
- W3105385664 cites W2047152814 @default.
- W3105385664 cites W2055665225 @default.
- W3105385664 cites W2066400502 @default.
- W3105385664 cites W2079656335 @default.
- W3105385664 cites W2082119996 @default.
- W3105385664 cites W2083278075 @default.
- W3105385664 cites W2083519365 @default.
- W3105385664 cites W2084008199 @default.
- W3105385664 cites W2084491844 @default.
- W3105385664 cites W2087535060 @default.
- W3105385664 cites W2094730608 @default.
- W3105385664 cites W2111958820 @default.
- W3105385664 cites W2112709449 @default.
- W3105385664 cites W2116031726 @default.
- W3105385664 cites W2120041700 @default.
- W3105385664 cites W2121515534 @default.
- W3105385664 cites W2123993001 @default.
- W3105385664 cites W2126452774 @default.
- W3105385664 cites W2133095386 @default.
- W3105385664 cites W2137788236 @default.
- W3105385664 cites W2143117649 @default.
- W3105385664 cites W2149060829 @default.
- W3105385664 cites W2152112426 @default.
- W3105385664 cites W2153235338 @default.
- W3105385664 cites W2158084754 @default.
- W3105385664 cites W2178225550 @default.
- W3105385664 cites W2230868847 @default.
- W3105385664 cites W2258834670 @default.
- W3105385664 cites W2261537921 @default.
- W3105385664 cites W2335616913 @default.
- W3105385664 cites W2508832261 @default.
- W3105385664 cites W2542920945 @default.
- W3105385664 cites W2560632258 @default.
- W3105385664 cites W2569295050 @default.
- W3105385664 cites W2589887861 @default.
- W3105385664 cites W2597532406 @default.
- W3105385664 cites W2601035857 @default.
- W3105385664 cites W2621189008 @default.
- W3105385664 cites W2734495585 @default.
- W3105385664 cites W2798093494 @default.
- W3105385664 cites W2802532024 @default.
- W3105385664 cites W2805262282 @default.
- W3105385664 cites W2811105108 @default.
- W3105385664 cites W2884025810 @default.
- W3105385664 cites W2884378407 @default.
- W3105385664 cites W2899711729 @default.
- W3105385664 cites W2943105769 @default.
- W3105385664 cites W2946564000 @default.
- W3105385664 cites W2947626232 @default.
- W3105385664 cites W2949505632 @default.
- W3105385664 cites W2951900988 @default.
- W3105385664 cites W2955206482 @default.
- W3105385664 cites W3026847252 @default.
- W3105385664 cites W3098625064 @default.
- W3105385664 cites W3101150805 @default.
- W3105385664 cites W3122507959 @default.
- W3105385664 doi "https://doi.org/10.1007/s12080-020-00482-7" @default.
- W3105385664 hasPublicationYear "2020" @default.
- W3105385664 type Work @default.
- W3105385664 sameAs 3105385664 @default.
- W3105385664 citedByCount "19" @default.
- W3105385664 countsByYear W31053856642021 @default.
- W3105385664 countsByYear W31053856642022 @default.
- W3105385664 countsByYear W31053856642023 @default.
- W3105385664 crossrefType "journal-article" @default.
- W3105385664 hasAuthorship W3105385664A5002648105 @default.
- W3105385664 hasAuthorship W3105385664A5026440231 @default.
- W3105385664 hasAuthorship W3105385664A5035840808 @default.