Matches in SemOpenAlex for { <https://semopenalex.org/work/W310542863> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W310542863 endingPage "164" @default.
- W310542863 startingPage "158" @default.
- W310542863 abstract "This paper proposes a novel method for supervised subspace learning based on Single-hidden Layer Feedforward Neural networks. The proposed method calculates appropriate network target vectors by formulating a Bayesian model exploiting both the labeling information available for the training data and geometric properties of the training data, when represented in the feature space determined by the network?s hidden layer outputs. After the calculation of the network target vectors, Extreme Learning Machine-based neural network training is applied and classification is performed using a Nearest Neighbor classifier. Experimental results on publicly available data sets show that the proposed approach consistently outperforms the standard ELM approach, as well as other standard methods." @default.
- W310542863 created "2016-06-24" @default.
- W310542863 creator A5064535836 @default.
- W310542863 date "2015-11-01" @default.
- W310542863 modified "2023-09-27" @default.
- W310542863 title "Extreme learning machine based supervised subspace learning" @default.
- W310542863 cites W1498436455 @default.
- W310542863 cites W1980713635 @default.
- W310542863 cites W1993717606 @default.
- W310542863 cites W1994292816 @default.
- W310542863 cites W2021150359 @default.
- W310542863 cites W2026131661 @default.
- W310542863 cites W2028759731 @default.
- W310542863 cites W2036833094 @default.
- W310542863 cites W2040338494 @default.
- W310542863 cites W2040647667 @default.
- W310542863 cites W2072123750 @default.
- W310542863 cites W2073259742 @default.
- W310542863 cites W2099579348 @default.
- W310542863 cites W2101674911 @default.
- W310542863 cites W2108995755 @default.
- W310542863 cites W2140224582 @default.
- W310542863 cites W2141695047 @default.
- W310542863 cites W2153635508 @default.
- W310542863 cites W2155482699 @default.
- W310542863 cites W2156142937 @default.
- W310542863 cites W2163683764 @default.
- W310542863 doi "https://doi.org/10.1016/j.neucom.2015.04.083" @default.
- W310542863 hasPublicationYear "2015" @default.
- W310542863 type Work @default.
- W310542863 sameAs 310542863 @default.
- W310542863 citedByCount "14" @default.
- W310542863 countsByYear W3105428632016 @default.
- W310542863 countsByYear W3105428632017 @default.
- W310542863 countsByYear W3105428632018 @default.
- W310542863 countsByYear W3105428632019 @default.
- W310542863 countsByYear W3105428632020 @default.
- W310542863 crossrefType "journal-article" @default.
- W310542863 hasAuthorship W310542863A5064535836 @default.
- W310542863 hasConcept C106135958 @default.
- W310542863 hasConcept C113238511 @default.
- W310542863 hasConcept C119857082 @default.
- W310542863 hasConcept C12267149 @default.
- W310542863 hasConcept C124101348 @default.
- W310542863 hasConcept C136389625 @default.
- W310542863 hasConcept C153180895 @default.
- W310542863 hasConcept C154945302 @default.
- W310542863 hasConcept C2780150128 @default.
- W310542863 hasConcept C32834561 @default.
- W310542863 hasConcept C41008148 @default.
- W310542863 hasConcept C50644808 @default.
- W310542863 hasConcept C83665646 @default.
- W310542863 hasConcept C95623464 @default.
- W310542863 hasConceptScore W310542863C106135958 @default.
- W310542863 hasConceptScore W310542863C113238511 @default.
- W310542863 hasConceptScore W310542863C119857082 @default.
- W310542863 hasConceptScore W310542863C12267149 @default.
- W310542863 hasConceptScore W310542863C124101348 @default.
- W310542863 hasConceptScore W310542863C136389625 @default.
- W310542863 hasConceptScore W310542863C153180895 @default.
- W310542863 hasConceptScore W310542863C154945302 @default.
- W310542863 hasConceptScore W310542863C2780150128 @default.
- W310542863 hasConceptScore W310542863C32834561 @default.
- W310542863 hasConceptScore W310542863C41008148 @default.
- W310542863 hasConceptScore W310542863C50644808 @default.
- W310542863 hasConceptScore W310542863C83665646 @default.
- W310542863 hasConceptScore W310542863C95623464 @default.
- W310542863 hasLocation W3105428631 @default.
- W310542863 hasOpenAccess W310542863 @default.
- W310542863 hasPrimaryLocation W3105428631 @default.
- W310542863 hasRelatedWork W2003465012 @default.
- W310542863 hasRelatedWork W2003820049 @default.
- W310542863 hasRelatedWork W2150631642 @default.
- W310542863 hasRelatedWork W2169209784 @default.
- W310542863 hasRelatedWork W2295628041 @default.
- W310542863 hasRelatedWork W2323792602 @default.
- W310542863 hasRelatedWork W310542863 @default.
- W310542863 hasRelatedWork W3184579101 @default.
- W310542863 hasRelatedWork W4947539 @default.
- W310542863 hasRelatedWork W2187500075 @default.
- W310542863 hasVolume "167" @default.
- W310542863 isParatext "false" @default.
- W310542863 isRetracted "false" @default.
- W310542863 magId "310542863" @default.
- W310542863 workType "article" @default.