Matches in SemOpenAlex for { <https://semopenalex.org/work/W3105458851> ?p ?o ?g. }
- W3105458851 endingPage "044104" @default.
- W3105458851 startingPage "044104" @default.
- W3105458851 abstract "Machine learning driven interatomic potentials, including Gaussian approximation potential (GAP) models, are emerging tools for atomistic simulations. Here, we address the methodological question of how one can fit GAP models that accurately predict vibrational properties in specific regions of configuration space, whilst retaining flexibility and transferability to others. We use an adaptive regularization of the GAP fit that scales with the absolute force magnitude on any given atom, thereby exploring the Bayesian interpretation of GAP regularization as an expected error, and its impact on the prediction of physical properties for a material of interest. The approach enables excellent predictions of phonon modes (to within 0.1-0.2 THz) for structurally diverse silicon allotropes, and it can be coupled with existing fitting databases for high transferability. These findings and workflows are expected to be useful for GAP-driven materials modeling more generally." @default.
- W3105458851 created "2020-11-23" @default.
- W3105458851 creator A5025442671 @default.
- W3105458851 creator A5027208775 @default.
- W3105458851 creator A5055231928 @default.
- W3105458851 creator A5071518647 @default.
- W3105458851 creator A5084420654 @default.
- W3105458851 date "2020-07-28" @default.
- W3105458851 modified "2023-10-17" @default.
- W3105458851 title "Combining phonon accuracy with high transferability in Gaussian approximation potential models" @default.
- W3105458851 cites W1499888549 @default.
- W3105458851 cites W1596185547 @default.
- W3105458851 cites W1607805614 @default.
- W3105458851 cites W1678620623 @default.
- W3105458851 cites W1754932684 @default.
- W3105458851 cites W1952152691 @default.
- W3105458851 cites W1963663373 @default.
- W3105458851 cites W1978783236 @default.
- W3105458851 cites W1980266666 @default.
- W3105458851 cites W1987135531 @default.
- W3105458851 cites W1987684779 @default.
- W3105458851 cites W1992985800 @default.
- W3105458851 cites W2000957843 @default.
- W3105458851 cites W2015197254 @default.
- W3105458851 cites W2019427580 @default.
- W3105458851 cites W2019465613 @default.
- W3105458851 cites W2022664983 @default.
- W3105458851 cites W2025444507 @default.
- W3105458851 cites W2028056984 @default.
- W3105458851 cites W2029413789 @default.
- W3105458851 cites W2031947179 @default.
- W3105458851 cites W2032757863 @default.
- W3105458851 cites W2036610609 @default.
- W3105458851 cites W2042640655 @default.
- W3105458851 cites W2047968138 @default.
- W3105458851 cites W2055400640 @default.
- W3105458851 cites W2057181841 @default.
- W3105458851 cites W2065124251 @default.
- W3105458851 cites W2083372231 @default.
- W3105458851 cites W2083415705 @default.
- W3105458851 cites W2083956694 @default.
- W3105458851 cites W2108167034 @default.
- W3105458851 cites W2110911634 @default.
- W3105458851 cites W2148596493 @default.
- W3105458851 cites W2159752439 @default.
- W3105458851 cites W2197007850 @default.
- W3105458851 cites W2213978102 @default.
- W3105458851 cites W2215765001 @default.
- W3105458851 cites W2316524229 @default.
- W3105458851 cites W2524119187 @default.
- W3105458851 cites W2541404351 @default.
- W3105458851 cites W2555633834 @default.
- W3105458851 cites W2566642125 @default.
- W3105458851 cites W2585152223 @default.
- W3105458851 cites W2601081289 @default.
- W3105458851 cites W26088913 @default.
- W3105458851 cites W2742127985 @default.
- W3105458851 cites W2742199611 @default.
- W3105458851 cites W2742492277 @default.
- W3105458851 cites W2743630749 @default.
- W3105458851 cites W2746244909 @default.
- W3105458851 cites W2755837508 @default.
- W3105458851 cites W2764267192 @default.
- W3105458851 cites W2792137452 @default.
- W3105458851 cites W2792521034 @default.
- W3105458851 cites W2795801565 @default.
- W3105458851 cites W2800301423 @default.
- W3105458851 cites W2801006326 @default.
- W3105458851 cites W2895154416 @default.
- W3105458851 cites W2897037748 @default.
- W3105458851 cites W2919248956 @default.
- W3105458851 cites W2933118606 @default.
- W3105458851 cites W2943241318 @default.
- W3105458851 cites W2946418155 @default.
- W3105458851 cites W2950873748 @default.
- W3105458851 cites W2956468808 @default.
- W3105458851 cites W2971894235 @default.
- W3105458851 cites W2974960113 @default.
- W3105458851 cites W2976720228 @default.
- W3105458851 cites W2980888952 @default.
- W3105458851 cites W3000291311 @default.
- W3105458851 cites W3004981459 @default.
- W3105458851 cites W3098509317 @default.
- W3105458851 cites W3098544579 @default.
- W3105458851 cites W3099581502 @default.
- W3105458851 cites W3099997081 @default.
- W3105458851 cites W3102610453 @default.
- W3105458851 cites W3206606417 @default.
- W3105458851 cites W832976576 @default.
- W3105458851 doi "https://doi.org/10.1063/5.0013826" @default.
- W3105458851 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32752705" @default.
- W3105458851 hasPublicationYear "2020" @default.
- W3105458851 type Work @default.
- W3105458851 sameAs 3105458851 @default.
- W3105458851 citedByCount "26" @default.
- W3105458851 countsByYear W31054588512020 @default.
- W3105458851 countsByYear W31054588512021 @default.
- W3105458851 countsByYear W31054588512022 @default.