Matches in SemOpenAlex for { <https://semopenalex.org/work/W3105463957> ?p ?o ?g. }
- W3105463957 abstract "The availability of large amounts of data and the necessity to process it efficiently have led to rapid development of machine learning techniques. To name a few examples, artificial neural network architectures are commonly used for financial forecasting, speech and image recognition, robotics, medicine, and even research. Direct hardware for neural networks is highly sought for overcoming the von Neumann bottleneck of software implementations. Reservoir computing (RC) is a recent and increasingly popular bio-inspired computing scheme which holds promise for an efficient temporal information processing. We demonstrate the applicability and performance of reservoir computing in a general complex Ginzburg-Landau lattice model, which adequately describes dynamics of a wide class of systems, including coherent photonic devices. In particular, we propose that the concept can be readily applied in exciton-polariton lattices, which are characterized by unprecedented photonic nonlinearity, opening the way to signal processing at rates of the order of 1 Tbit (1/s)." @default.
- W3105463957 created "2020-11-23" @default.
- W3105463957 creator A5015326246 @default.
- W3105463957 creator A5059974027 @default.
- W3105463957 creator A5070568880 @default.
- W3105463957 creator A5081723800 @default.
- W3105463957 date "2019-06-13" @default.
- W3105463957 modified "2023-10-01" @default.
- W3105463957 title "Neuromorphic Computing in Ginzburg-Landau Polariton-Lattice Systems" @default.
- W3105463957 cites W1487002516 @default.
- W3105463957 cites W1526051863 @default.
- W3105463957 cites W1912018024 @default.
- W3105463957 cites W1928358414 @default.
- W3105463957 cites W1965702053 @default.
- W3105463957 cites W1967394964 @default.
- W3105463957 cites W1977664984 @default.
- W3105463957 cites W1980664748 @default.
- W3105463957 cites W1986964674 @default.
- W3105463957 cites W2002094651 @default.
- W3105463957 cites W2014555200 @default.
- W3105463957 cites W2019959154 @default.
- W3105463957 cites W2022248835 @default.
- W3105463957 cites W2029715417 @default.
- W3105463957 cites W2029939668 @default.
- W3105463957 cites W2041921807 @default.
- W3105463957 cites W2049641303 @default.
- W3105463957 cites W2074477564 @default.
- W3105463957 cites W2082582972 @default.
- W3105463957 cites W2103179919 @default.
- W3105463957 cites W2106725754 @default.
- W3105463957 cites W2112796928 @default.
- W3105463957 cites W2118706537 @default.
- W3105463957 cites W2138422822 @default.
- W3105463957 cites W2138913040 @default.
- W3105463957 cites W2147052645 @default.
- W3105463957 cites W2161482522 @default.
- W3105463957 cites W2171865010 @default.
- W3105463957 cites W2216447290 @default.
- W3105463957 cites W2225330332 @default.
- W3105463957 cites W2225348720 @default.
- W3105463957 cites W2272508502 @default.
- W3105463957 cites W2279900190 @default.
- W3105463957 cites W2414006382 @default.
- W3105463957 cites W2533289250 @default.
- W3105463957 cites W2584998015 @default.
- W3105463957 cites W2587524409 @default.
- W3105463957 cites W2613585099 @default.
- W3105463957 cites W2772397789 @default.
- W3105463957 cites W2919115771 @default.
- W3105463957 cites W2963187991 @default.
- W3105463957 cites W2963449963 @default.
- W3105463957 cites W3105157114 @default.
- W3105463957 cites W3105497083 @default.
- W3105463957 doi "https://doi.org/10.1103/physrevapplied.11.064029" @default.
- W3105463957 hasPublicationYear "2019" @default.
- W3105463957 type Work @default.
- W3105463957 sameAs 3105463957 @default.
- W3105463957 citedByCount "34" @default.
- W3105463957 countsByYear W31054639572020 @default.
- W3105463957 countsByYear W31054639572021 @default.
- W3105463957 countsByYear W31054639572022 @default.
- W3105463957 countsByYear W31054639572023 @default.
- W3105463957 crossrefType "journal-article" @default.
- W3105463957 hasAuthorship W3105463957A5015326246 @default.
- W3105463957 hasAuthorship W3105463957A5059974027 @default.
- W3105463957 hasAuthorship W3105463957A5070568880 @default.
- W3105463957 hasAuthorship W3105463957A5081723800 @default.
- W3105463957 hasBestOaLocation W31054639572 @default.
- W3105463957 hasConcept C104267543 @default.
- W3105463957 hasConcept C111919701 @default.
- W3105463957 hasConcept C118524514 @default.
- W3105463957 hasConcept C120665830 @default.
- W3105463957 hasConcept C121332964 @default.
- W3105463957 hasConcept C135796866 @default.
- W3105463957 hasConcept C147168706 @default.
- W3105463957 hasConcept C149635348 @default.
- W3105463957 hasConcept C151927369 @default.
- W3105463957 hasConcept C154945302 @default.
- W3105463957 hasConcept C158622935 @default.
- W3105463957 hasConcept C160724564 @default.
- W3105463957 hasConcept C199360897 @default.
- W3105463957 hasConcept C20788544 @default.
- W3105463957 hasConcept C24890656 @default.
- W3105463957 hasConcept C26713055 @default.
- W3105463957 hasConcept C2780513914 @default.
- W3105463957 hasConcept C2781204021 @default.
- W3105463957 hasConcept C34413123 @default.
- W3105463957 hasConcept C41008148 @default.
- W3105463957 hasConcept C459310 @default.
- W3105463957 hasConcept C49040817 @default.
- W3105463957 hasConcept C50644808 @default.
- W3105463957 hasConcept C62520636 @default.
- W3105463957 hasConcept C6260449 @default.
- W3105463957 hasConcept C76808792 @default.
- W3105463957 hasConcept C80444323 @default.
- W3105463957 hasConcept C80469333 @default.
- W3105463957 hasConcept C84462506 @default.
- W3105463957 hasConcept C90509273 @default.
- W3105463957 hasConcept C9390403 @default.
- W3105463957 hasConceptScore W3105463957C104267543 @default.