Matches in SemOpenAlex for { <https://semopenalex.org/work/W3105555637> ?p ?o ?g. }
- W3105555637 abstract "Genome-wide analysis of miRNA molecules reveals important information for understanding the biology of cancer. Typically, miRNAs are used as features in statistical learning methods in order to train learning models to predict cancer. Thus, this fact motivated us to propose a method that integrates clustering and classification techniques for diverse cancer types with survival analysis in order to identify potential miRNAs that can play a crucial role in the prediction of different types of tumors. Our method has two parts. In first part, a feature selection method named Stochastic Covariance Evolutionary Strategy with Forward Selection (SCES-FS) is developed by integrating Stochastic Neighbor Embedding (SNE), Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) and classifiers with primary objective of selecting biomarkers. SNE is used to reorder the features by performing an implicit clustering with highly correlated neighboring features. A subset of features is selected heuristically to perform multi-class classification for diverse cancer types. While in second part, the most important features acquired in the first part are used to perform survival analysis using Cox regression primarily to establish the effectiveness of selected features. Next Generation Sequencing data of miRNA expression for 1707 samples of ten diverse cancer types along with 333 normal samples are analysed from The Cancer Genome Atlas. The SCES-FS method is compared with well known feature selection methods where the multi-class classification with selected 17 miRNAs performs better with accuracy 96%. Moreover, the biological significance of the selected miRNAs is demonstrated with the help of network analysis, expression analysis using hierarchical clustering in form of heatmap, KEGG pathways analysis, GO enrichment and Protein Protein Interaction analysis. Overall, the results indicate that the 17 selected miRNAs are associated with many key cancer regulators e.g. MYC, VEGFA, AKT1, CDKN1A, RHOA, PTEN through their targets. Therefore the selected miRNAs can be considered as putative biomarkers for ten diverse cancer types." @default.
- W3105555637 created "2020-11-23" @default.
- W3105555637 creator A5003577135 @default.
- W3105555637 creator A5009395136 @default.
- W3105555637 creator A5011669714 @default.
- W3105555637 creator A5013275588 @default.
- W3105555637 creator A5020346637 @default.
- W3105555637 creator A5023136258 @default.
- W3105555637 creator A5037855965 @default.
- W3105555637 creator A5045954370 @default.
- W3105555637 creator A5058815005 @default.
- W3105555637 date "2020-11-13" @default.
- W3105555637 modified "2023-10-14" @default.
- W3105555637 title "Identification of miRNA Biomarkers for Diverse Cancer Types Using Statistical Learning Methods at the Whole-Genome Scale" @default.
- W3105555637 cites W1590499900 @default.
- W3105555637 cites W1609044025 @default.
- W3105555637 cites W1797580880 @default.
- W3105555637 cites W1819522214 @default.
- W3105555637 cites W1907342860 @default.
- W3105555637 cites W1982564236 @default.
- W3105555637 cites W1985258161 @default.
- W3105555637 cites W1991942035 @default.
- W3105555637 cites W2007368465 @default.
- W3105555637 cites W2027223522 @default.
- W3105555637 cites W2038809726 @default.
- W3105555637 cites W2062289724 @default.
- W3105555637 cites W2065125559 @default.
- W3105555637 cites W2072026441 @default.
- W3105555637 cites W2074682976 @default.
- W3105555637 cites W2081795553 @default.
- W3105555637 cites W2084654177 @default.
- W3105555637 cites W2084821192 @default.
- W3105555637 cites W2090096246 @default.
- W3105555637 cites W2101677491 @default.
- W3105555637 cites W2112124032 @default.
- W3105555637 cites W2123172482 @default.
- W3105555637 cites W2123224804 @default.
- W3105555637 cites W2130979840 @default.
- W3105555637 cites W2135046866 @default.
- W3105555637 cites W2138537392 @default.
- W3105555637 cites W2143043751 @default.
- W3105555637 cites W2143426320 @default.
- W3105555637 cites W2154053567 @default.
- W3105555637 cites W2159482845 @default.
- W3105555637 cites W2159767268 @default.
- W3105555637 cites W2162674813 @default.
- W3105555637 cites W2164909024 @default.
- W3105555637 cites W2171720857 @default.
- W3105555637 cites W2174734928 @default.
- W3105555637 cites W2180078914 @default.
- W3105555637 cites W2187129674 @default.
- W3105555637 cites W2236822143 @default.
- W3105555637 cites W2336531131 @default.
- W3105555637 cites W2344681634 @default.
- W3105555637 cites W2345356016 @default.
- W3105555637 cites W2398901652 @default.
- W3105555637 cites W2413370544 @default.
- W3105555637 cites W2423455227 @default.
- W3105555637 cites W2567080747 @default.
- W3105555637 cites W2574721333 @default.
- W3105555637 cites W2579522812 @default.
- W3105555637 cites W2586411032 @default.
- W3105555637 cites W2596198811 @default.
- W3105555637 cites W2613738073 @default.
- W3105555637 cites W2617756872 @default.
- W3105555637 cites W2736520162 @default.
- W3105555637 cites W2753903672 @default.
- W3105555637 cites W2759696692 @default.
- W3105555637 cites W2761184186 @default.
- W3105555637 cites W2766085347 @default.
- W3105555637 cites W2773892600 @default.
- W3105555637 cites W2778434094 @default.
- W3105555637 cites W2780155440 @default.
- W3105555637 cites W2792995236 @default.
- W3105555637 cites W2796153844 @default.
- W3105555637 cites W2900569176 @default.
- W3105555637 cites W2911964244 @default.
- W3105555637 cites W2921170286 @default.
- W3105555637 cites W2997104189 @default.
- W3105555637 cites W3147894994 @default.
- W3105555637 cites W4236137412 @default.
- W3105555637 cites W4239510810 @default.
- W3105555637 cites W4255156463 @default.
- W3105555637 cites W4256333068 @default.
- W3105555637 cites W4294216483 @default.
- W3105555637 cites W93047222 @default.
- W3105555637 doi "https://doi.org/10.3389/fgene.2020.00982" @default.
- W3105555637 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7691578" @default.
- W3105555637 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33281862" @default.
- W3105555637 hasPublicationYear "2020" @default.
- W3105555637 type Work @default.
- W3105555637 sameAs 3105555637 @default.
- W3105555637 citedByCount "3" @default.
- W3105555637 countsByYear W31055556372021 @default.
- W3105555637 countsByYear W31055556372022 @default.
- W3105555637 countsByYear W31055556372023 @default.
- W3105555637 crossrefType "journal-article" @default.
- W3105555637 hasAuthorship W3105555637A5003577135 @default.
- W3105555637 hasAuthorship W3105555637A5009395136 @default.
- W3105555637 hasAuthorship W3105555637A5011669714 @default.