Matches in SemOpenAlex for { <https://semopenalex.org/work/W3105616487> ?p ?o ?g. }
- W3105616487 endingPage "796" @default.
- W3105616487 startingPage "777" @default.
- W3105616487 abstract "During the last decade, there has been an explosive growth in survey data and deep learning techniques, both of which have enabled great advances for astronomy. The amount of data from various surveys from multiple epochs with a wide range of wavelengths, albeit with varying brightness and quality, is overwhelming, and leveraging information from overlapping observations from different surveys has limitless potential in understanding galaxy formation and evolution. Synthetic galaxy image generation using physical models has been an important tool for survey data analysis, while deep learning generative models show great promise. In this paper, we present a novel approach for robustly expanding and improving survey data through cross survey feature translation. We trained two types of neural networks to map images from the Sloan Digital Sky Survey (SDSS) to corresponding images from the Dark Energy Survey (DES). This map was used to generate false DES representations of SDSS images, increasing the brightness and S/N while retaining important morphological information. We substantiate the robustness of our method by generating DES representations of SDSS images from outside the overlapping region, showing that the brightness and quality are improved even when the source images are of lower quality than the training images. Finally, we highlight several images in which the reconstruction process appears to have removed large artifacts from SDSS images. While only an initial application, our method shows promise as a method for robustly expanding and improving the quality of optical survey data and provides a potential avenue for cross-band reconstruction." @default.
- W3105616487 created "2020-11-23" @default.
- W3105616487 creator A5047192991 @default.
- W3105616487 creator A5059804390 @default.
- W3105616487 creator A5060384954 @default.
- W3105616487 date "2021-02-03" @default.
- W3105616487 modified "2023-10-16" @default.
- W3105616487 title "Survey2Survey: a deep learning generative model approach for cross-survey image mapping" @default.
- W3105616487 cites W1981452559 @default.
- W3105616487 cites W1994041452 @default.
- W3105616487 cites W2011301426 @default.
- W3105616487 cites W2015159529 @default.
- W3105616487 cites W2025768430 @default.
- W3105616487 cites W2063568047 @default.
- W3105616487 cites W2066179804 @default.
- W3105616487 cites W2092607111 @default.
- W3105616487 cites W2106980241 @default.
- W3105616487 cites W2124199755 @default.
- W3105616487 cites W2133665775 @default.
- W3105616487 cites W2135625048 @default.
- W3105616487 cites W2136655611 @default.
- W3105616487 cites W2146292423 @default.
- W3105616487 cites W2764173864 @default.
- W3105616487 cites W2888532099 @default.
- W3105616487 cites W2940729180 @default.
- W3105616487 cites W2962793481 @default.
- W3105616487 cites W2963073614 @default.
- W3105616487 cites W2972741532 @default.
- W3105616487 cites W2972804893 @default.
- W3105616487 cites W2980922965 @default.
- W3105616487 cites W2984244983 @default.
- W3105616487 cites W2985837896 @default.
- W3105616487 cites W2997129807 @default.
- W3105616487 cites W3005360934 @default.
- W3105616487 cites W3032874046 @default.
- W3105616487 cites W3087681349 @default.
- W3105616487 cites W3099878876 @default.
- W3105616487 cites W3101900021 @default.
- W3105616487 cites W3103145119 @default.
- W3105616487 cites W3103819337 @default.
- W3105616487 cites W3104062568 @default.
- W3105616487 cites W3104608022 @default.
- W3105616487 cites W3105655676 @default.
- W3105616487 cites W3115503526 @default.
- W3105616487 cites W3120907238 @default.
- W3105616487 doi "https://doi.org/10.1093/mnras/stab294" @default.
- W3105616487 hasPublicationYear "2021" @default.
- W3105616487 type Work @default.
- W3105616487 sameAs 3105616487 @default.
- W3105616487 citedByCount "5" @default.
- W3105616487 countsByYear W31056164872022 @default.
- W3105616487 countsByYear W31056164872023 @default.
- W3105616487 crossrefType "journal-article" @default.
- W3105616487 hasAuthorship W3105616487A5047192991 @default.
- W3105616487 hasAuthorship W3105616487A5059804390 @default.
- W3105616487 hasAuthorship W3105616487A5060384954 @default.
- W3105616487 hasBestOaLocation W31056164872 @default.
- W3105616487 hasConcept C104317684 @default.
- W3105616487 hasConcept C108583219 @default.
- W3105616487 hasConcept C121332964 @default.
- W3105616487 hasConcept C125245961 @default.
- W3105616487 hasConcept C1276947 @default.
- W3105616487 hasConcept C154945302 @default.
- W3105616487 hasConcept C185592680 @default.
- W3105616487 hasConcept C31972630 @default.
- W3105616487 hasConcept C41008148 @default.
- W3105616487 hasConcept C50644808 @default.
- W3105616487 hasConcept C55493867 @default.
- W3105616487 hasConcept C63479239 @default.
- W3105616487 hasConceptScore W3105616487C104317684 @default.
- W3105616487 hasConceptScore W3105616487C108583219 @default.
- W3105616487 hasConceptScore W3105616487C121332964 @default.
- W3105616487 hasConceptScore W3105616487C125245961 @default.
- W3105616487 hasConceptScore W3105616487C1276947 @default.
- W3105616487 hasConceptScore W3105616487C154945302 @default.
- W3105616487 hasConceptScore W3105616487C185592680 @default.
- W3105616487 hasConceptScore W3105616487C31972630 @default.
- W3105616487 hasConceptScore W3105616487C41008148 @default.
- W3105616487 hasConceptScore W3105616487C50644808 @default.
- W3105616487 hasConceptScore W3105616487C55493867 @default.
- W3105616487 hasConceptScore W3105616487C63479239 @default.
- W3105616487 hasFunder F4320306076 @default.
- W3105616487 hasIssue "1" @default.
- W3105616487 hasLocation W31056164871 @default.
- W3105616487 hasLocation W31056164872 @default.
- W3105616487 hasOpenAccess W3105616487 @default.
- W3105616487 hasPrimaryLocation W31056164871 @default.
- W3105616487 hasRelatedWork W1509621893 @default.
- W3105616487 hasRelatedWork W2035413902 @default.
- W3105616487 hasRelatedWork W2035976912 @default.
- W3105616487 hasRelatedWork W2109974539 @default.
- W3105616487 hasRelatedWork W2125927971 @default.
- W3105616487 hasRelatedWork W2541791370 @default.
- W3105616487 hasRelatedWork W2575060017 @default.
- W3105616487 hasRelatedWork W2738084969 @default.
- W3105616487 hasRelatedWork W2954664659 @default.
- W3105616487 hasRelatedWork W4244517792 @default.
- W3105616487 hasVolume "503" @default.