Matches in SemOpenAlex for { <https://semopenalex.org/work/W3105655321> ?p ?o ?g. }
- W3105655321 abstract "We study the one-loop partition function of 3D gravity without cosmological constant on the solid torus with arbitrary metric fluctuations on the boundary. To this end we employ the discrete approach of (quantum) Regge calculus. In contrast with similar calculations performed directly in the continuum, we work with a boundary at finite distance from the torus axis. We show that after taking the continuum limit on the boundary - but still keeping finite distance from the torus axis - the one-loop correction is the same as the one recently found in the continuum in Barnich et al. for an asymptotically flat boundary. The discrete approach taken here allows to identify the boundary degrees of freedom which are responsible for the non-trivial structure of the one-loop correction. We therefore calculate also the Hamilton-Jacobi function to quadratic order in the boundary fluctuations both in the discrete set-up and directly in the continuum theory. We identify a dual boundary field theory with a Liouville type coupling to the boundary metric. The discrete set-up allows again to identify the dual field with degrees of freedom associated to radial bulk edges attached to the boundary. Integrating out this dual field reproduces the (boundary diffeomorphism invariant part of the) quadratic order of the Hamilton-Jacobi functional. The considerations here show that bulk boundary dualities might also emerge at finite boundaries and moreover that discrete approaches are helpful in identifying such dualities." @default.
- W3105655321 created "2020-11-23" @default.
- W3105655321 creator A5017055505 @default.
- W3105655321 creator A5089238535 @default.
- W3105655321 date "2016-03-01" @default.
- W3105655321 modified "2023-09-30" @default.
- W3105655321 title "3D holography: from discretum to continuum" @default.
- W3105655321 cites W1526248904 @default.
- W3105655321 cites W1643540041 @default.
- W3105655321 cites W1763748250 @default.
- W3105655321 cites W1889142700 @default.
- W3105655321 cites W1909273331 @default.
- W3105655321 cites W1947273351 @default.
- W3105655321 cites W1965001977 @default.
- W3105655321 cites W1965322986 @default.
- W3105655321 cites W1974140843 @default.
- W3105655321 cites W1976089560 @default.
- W3105655321 cites W1976604005 @default.
- W3105655321 cites W1984010647 @default.
- W3105655321 cites W1988378093 @default.
- W3105655321 cites W1989677302 @default.
- W3105655321 cites W1994522572 @default.
- W3105655321 cites W1995112015 @default.
- W3105655321 cites W1995372459 @default.
- W3105655321 cites W2005195651 @default.
- W3105655321 cites W2006930907 @default.
- W3105655321 cites W2011400442 @default.
- W3105655321 cites W2025148421 @default.
- W3105655321 cites W2028342982 @default.
- W3105655321 cites W2029339103 @default.
- W3105655321 cites W2035555071 @default.
- W3105655321 cites W2041977240 @default.
- W3105655321 cites W2044672558 @default.
- W3105655321 cites W2053580764 @default.
- W3105655321 cites W2056994437 @default.
- W3105655321 cites W2059375241 @default.
- W3105655321 cites W2059724130 @default.
- W3105655321 cites W2059972246 @default.
- W3105655321 cites W2067831429 @default.
- W3105655321 cites W2070707213 @default.
- W3105655321 cites W2073212852 @default.
- W3105655321 cites W2079646839 @default.
- W3105655321 cites W2086731073 @default.
- W3105655321 cites W2087644205 @default.
- W3105655321 cites W2088901485 @default.
- W3105655321 cites W2090278800 @default.
- W3105655321 cites W2090668397 @default.
- W3105655321 cites W2108508928 @default.
- W3105655321 cites W2117195577 @default.
- W3105655321 cites W2130966641 @default.
- W3105655321 cites W2134209739 @default.
- W3105655321 cites W2153274301 @default.
- W3105655321 cites W2171133031 @default.
- W3105655321 cites W2203123538 @default.
- W3105655321 cites W2280308580 @default.
- W3105655321 cites W2963438085 @default.
- W3105655321 cites W3000019265 @default.
- W3105655321 cites W3037108023 @default.
- W3105655321 cites W3037305779 @default.
- W3105655321 cites W3098738558 @default.
- W3105655321 cites W3098995211 @default.
- W3105655321 cites W3100355472 @default.
- W3105655321 cites W3100362012 @default.
- W3105655321 cites W3100683153 @default.
- W3105655321 cites W3100938138 @default.
- W3105655321 cites W3101821635 @default.
- W3105655321 cites W3102651361 @default.
- W3105655321 cites W3102731393 @default.
- W3105655321 cites W3103086998 @default.
- W3105655321 cites W3103642622 @default.
- W3105655321 cites W3103643384 @default.
- W3105655321 cites W3104157917 @default.
- W3105655321 cites W3104216857 @default.
- W3105655321 cites W3104856735 @default.
- W3105655321 cites W3104886887 @default.
- W3105655321 cites W3105483438 @default.
- W3105655321 cites W3105553883 @default.
- W3105655321 cites W3105981422 @default.
- W3105655321 cites W3106024890 @default.
- W3105655321 cites W3121892382 @default.
- W3105655321 cites W3123090548 @default.
- W3105655321 cites W4233500204 @default.
- W3105655321 cites W4241513373 @default.
- W3105655321 doi "https://doi.org/10.1007/jhep03(2016)208" @default.
- W3105655321 hasPublicationYear "2016" @default.
- W3105655321 type Work @default.
- W3105655321 sameAs 3105655321 @default.
- W3105655321 citedByCount "26" @default.
- W3105655321 countsByYear W31056553212016 @default.
- W3105655321 countsByYear W31056553212017 @default.
- W3105655321 countsByYear W31056553212018 @default.
- W3105655321 countsByYear W31056553212019 @default.
- W3105655321 countsByYear W31056553212020 @default.
- W3105655321 countsByYear W31056553212021 @default.
- W3105655321 countsByYear W31056553212022 @default.
- W3105655321 countsByYear W31056553212023 @default.
- W3105655321 crossrefType "journal-article" @default.
- W3105655321 hasAuthorship W3105655321A5017055505 @default.
- W3105655321 hasAuthorship W3105655321A5089238535 @default.
- W3105655321 hasBestOaLocation W31056553211 @default.