Matches in SemOpenAlex for { <https://semopenalex.org/work/W3105660635> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3105660635 endingPage "696" @default.
- W3105660635 startingPage "663" @default.
- W3105660635 abstract "We consider the gl(N)-invariant Calogero-Sutherland Models with N=1,2,3,... in a unified framework, which is the framework of Symmetric Polynomials. By the framework we mean an isomorphism between the space of states of the gl(N)-invariant Calogero-Sutherland Model and the space of Symmetric Laurent Polynomials. In this framework it becomes apparent that all gl(N)-invariant Calogero-Sutherland Models are manifestations of the same entity, which is the commuting family of Macdonald Operators. Macdonald Operators depend on two parameters $q$ and $t$. The Hamiltonian of gl(N)-invariant Calogero-Sutherland Model belongs to a degeneration of this family in the limit when both $q$ and $t$ approach the N-th elementary root of unity. This is a generalization of the well-known situation in the case of Scalar Calogero-Sutherland Model (N=1). In the limit the commuting family of Macdonald Operators is identified with the maximal commutative sub-algebra in the Yangian action on the space of states of the gl(N)-invariant Calogero-Sutherland Model. The limits of Macdonald Polynomials which we call gl(N)-Jack Polynomials are eigenvectors of this sub-algebra and form Yangian Gelfand-Zetlin bases in irreducible components of the Yangian action. The gl(N)-Jack Polynomials describe the orthogonal eigenbasis of gl(N)-invariant Calogero-Sutherland Model in exactly the same way as Jack Polynomials describe the orthogonal eigenbasis of the Scalar Model (N=1). For each known property of Macdonald Polynomials there is a corresponding property of gl(N)-Jack Polynomials. As a simplest application of these properties we compute two-point Dynamical Spin-Density and Density Correlation Functions in the gl(2)-invariant Calogero-Sutherland Model at integer values of the coupling constant." @default.
- W3105660635 created "2020-11-23" @default.
- W3105660635 creator A5080620540 @default.
- W3105660635 date "1998-02-01" @default.
- W3105660635 modified "2023-09-27" @default.
- W3105660635 title "Yangian Gelfand-Zetlin Bases, $glN$ -Jack Polynomials and Computation of Dynamical Correlation Functions in the Spin Calogero-Sutherland Model" @default.
- W3105660635 cites W1504186110 @default.
- W3105660635 cites W1507828290 @default.
- W3105660635 cites W1657002161 @default.
- W3105660635 cites W1983326071 @default.
- W3105660635 cites W1990153237 @default.
- W3105660635 cites W1997749689 @default.
- W3105660635 cites W2004451697 @default.
- W3105660635 cites W2023796034 @default.
- W3105660635 cites W2029262410 @default.
- W3105660635 cites W2037506855 @default.
- W3105660635 cites W2046336450 @default.
- W3105660635 cites W2061034105 @default.
- W3105660635 cites W2065508184 @default.
- W3105660635 cites W2087820257 @default.
- W3105660635 cites W2127707637 @default.
- W3105660635 cites W2134984950 @default.
- W3105660635 cites W2573960099 @default.
- W3105660635 cites W2612451553 @default.
- W3105660635 cites W2963899058 @default.
- W3105660635 cites W3098114657 @default.
- W3105660635 cites W3104366450 @default.
- W3105660635 doi "https://doi.org/10.1007/s002200050283" @default.
- W3105660635 hasPublicationYear "1998" @default.
- W3105660635 type Work @default.
- W3105660635 sameAs 3105660635 @default.
- W3105660635 citedByCount "33" @default.
- W3105660635 countsByYear W31056606352012 @default.
- W3105660635 countsByYear W31056606352013 @default.
- W3105660635 countsByYear W31056606352014 @default.
- W3105660635 countsByYear W31056606352015 @default.
- W3105660635 countsByYear W31056606352016 @default.
- W3105660635 countsByYear W31056606352017 @default.
- W3105660635 countsByYear W31056606352018 @default.
- W3105660635 countsByYear W31056606352020 @default.
- W3105660635 countsByYear W31056606352022 @default.
- W3105660635 crossrefType "journal-article" @default.
- W3105660635 hasAuthorship W3105660635A5080620540 @default.
- W3105660635 hasBestOaLocation W31056606352 @default.
- W3105660635 hasConcept C10628310 @default.
- W3105660635 hasConcept C114614502 @default.
- W3105660635 hasConcept C136119220 @default.
- W3105660635 hasConcept C190470478 @default.
- W3105660635 hasConcept C202444582 @default.
- W3105660635 hasConcept C2777954988 @default.
- W3105660635 hasConcept C33923547 @default.
- W3105660635 hasConcept C37914503 @default.
- W3105660635 hasConcept C96403706 @default.
- W3105660635 hasConceptScore W3105660635C10628310 @default.
- W3105660635 hasConceptScore W3105660635C114614502 @default.
- W3105660635 hasConceptScore W3105660635C136119220 @default.
- W3105660635 hasConceptScore W3105660635C190470478 @default.
- W3105660635 hasConceptScore W3105660635C202444582 @default.
- W3105660635 hasConceptScore W3105660635C2777954988 @default.
- W3105660635 hasConceptScore W3105660635C33923547 @default.
- W3105660635 hasConceptScore W3105660635C37914503 @default.
- W3105660635 hasConceptScore W3105660635C96403706 @default.
- W3105660635 hasIssue "3" @default.
- W3105660635 hasLocation W31056606351 @default.
- W3105660635 hasLocation W31056606352 @default.
- W3105660635 hasOpenAccess W3105660635 @default.
- W3105660635 hasPrimaryLocation W31056606351 @default.
- W3105660635 hasRelatedWork W1527443911 @default.
- W3105660635 hasRelatedWork W2043021339 @default.
- W3105660635 hasRelatedWork W2056663089 @default.
- W3105660635 hasRelatedWork W2073994398 @default.
- W3105660635 hasRelatedWork W2088544526 @default.
- W3105660635 hasRelatedWork W2158253985 @default.
- W3105660635 hasRelatedWork W2387173559 @default.
- W3105660635 hasRelatedWork W2806230589 @default.
- W3105660635 hasRelatedWork W3101175790 @default.
- W3105660635 hasRelatedWork W4318769964 @default.
- W3105660635 hasVolume "191" @default.
- W3105660635 isParatext "false" @default.
- W3105660635 isRetracted "false" @default.
- W3105660635 magId "3105660635" @default.
- W3105660635 workType "article" @default.