Matches in SemOpenAlex for { <https://semopenalex.org/work/W3105693134> ?p ?o ?g. }
- W3105693134 endingPage "2016" @default.
- W3105693134 startingPage "2005" @default.
- W3105693134 abstract "This study aimed to investigate the diagnostic performance of radiomic features based on digital mammography (DM) in the differential diagnosis of benign and malignant round-like (round and oval) solid tumors with circumscribed or obscured margins but without suspicious malignant or benign macrocalcifications and to investigate whether quantitative radiomic features can distinguish triple-negative breast cancer (TNBC) from non-TNBC (NTNBC).This retrospective study included 112 patients with round-like tumors who underwent DM within 20 days preoperatively. Breast masses were segmented manually on the DM images, then radiomic features were extracted. The predictive models were used to distinguish between benign and malignant tumors and to predict TNBC in invasive ductal carcinoma. The receiver operating characteristic curves (ROCs) for these models were obtained for initial DM characteristics, radiomic features to predict malignant tumors and TNBC. The decision curve was obtained to evaluate the clinical usefulness of the model for the prediction of benign or malignant tumors.The study cohort included 79 patients with pathologically confirmed malignant masses and 33 patients with benign (training cohort: n=79; testing cohort: n=33). A total of 396 features were extracted from the DM images for each patient. The radiomics model for the prediction of malignant tumors achieved an area under the receiver operating characteristic curve (AUC) of 0.88 [95% confidence interval (CI), 0.76-1.00] in the testing cohort; the radiomics model for the prediction of TNBC achieved an AUC of 0.84 (95% CI, 0.73-0.96). In contrast, DM characteristics alone poorly predicted malignant tumors, with the density achieving an AUC 0.69 (95% CI, 0.59-0.79); there was no significant difference in DM characteristics between TNBC and NTNBC (P>0.05, all). The decision curve showed the good clinical usefulness of the model for the prediction of malignant tumors.This study showed that DM-based radiomics can accurately discriminate between benign and malignant round-like tumors with circumscribed or obscured margins but without suspicious malignant or benign macrocalcifications. Additionally, it can be used to predict TNBC in invasive ductal carcinoma. DM-based radiomics can aid radiologists in mammogram reading, clinical diagnosis and decision-making." @default.
- W3105693134 created "2020-11-23" @default.
- W3105693134 creator A5002446630 @default.
- W3105693134 creator A5002751184 @default.
- W3105693134 creator A5008465910 @default.
- W3105693134 creator A5020482017 @default.
- W3105693134 creator A5020918251 @default.
- W3105693134 creator A5061264097 @default.
- W3105693134 creator A5079532459 @default.
- W3105693134 creator A5080256378 @default.
- W3105693134 creator A5090830419 @default.
- W3105693134 date "2020-12-01" @default.
- W3105693134 modified "2023-10-14" @default.
- W3105693134 title "Application of digital mammography-based radiomics in the differentiation of benign and malignant round-like breast tumors and the prediction of molecular subtypes" @default.
- W3105693134 cites W1497822707 @default.
- W3105693134 cites W1974276084 @default.
- W3105693134 cites W1998960726 @default.
- W3105693134 cites W2000614918 @default.
- W3105693134 cites W2045216597 @default.
- W3105693134 cites W2055142946 @default.
- W3105693134 cites W2082254846 @default.
- W3105693134 cites W2085659687 @default.
- W3105693134 cites W2091265182 @default.
- W3105693134 cites W2096027508 @default.
- W3105693134 cites W2126292931 @default.
- W3105693134 cites W2129487742 @default.
- W3105693134 cites W2154536380 @default.
- W3105693134 cites W2155329254 @default.
- W3105693134 cites W2168441082 @default.
- W3105693134 cites W2271399747 @default.
- W3105693134 cites W2313422996 @default.
- W3105693134 cites W2327037637 @default.
- W3105693134 cites W2601711680 @default.
- W3105693134 cites W2767630494 @default.
- W3105693134 cites W2790626109 @default.
- W3105693134 cites W2912993657 @default.
- W3105693134 cites W2980408204 @default.
- W3105693134 cites W2981394165 @default.
- W3105693134 doi "https://doi.org/10.21037/gs-20-473" @default.
- W3105693134 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7804543" @default.
- W3105693134 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33447551" @default.
- W3105693134 hasPublicationYear "2020" @default.
- W3105693134 type Work @default.
- W3105693134 sameAs 3105693134 @default.
- W3105693134 citedByCount "6" @default.
- W3105693134 countsByYear W31056931342022 @default.
- W3105693134 countsByYear W31056931342023 @default.
- W3105693134 crossrefType "journal-article" @default.
- W3105693134 hasAuthorship W3105693134A5002446630 @default.
- W3105693134 hasAuthorship W3105693134A5002751184 @default.
- W3105693134 hasAuthorship W3105693134A5008465910 @default.
- W3105693134 hasAuthorship W3105693134A5020482017 @default.
- W3105693134 hasAuthorship W3105693134A5020918251 @default.
- W3105693134 hasAuthorship W3105693134A5061264097 @default.
- W3105693134 hasAuthorship W3105693134A5079532459 @default.
- W3105693134 hasAuthorship W3105693134A5080256378 @default.
- W3105693134 hasAuthorship W3105693134A5090830419 @default.
- W3105693134 hasBestOaLocation W31056931341 @default.
- W3105693134 hasConcept C121608353 @default.
- W3105693134 hasConcept C126322002 @default.
- W3105693134 hasConcept C126838900 @default.
- W3105693134 hasConcept C142724271 @default.
- W3105693134 hasConcept C167135981 @default.
- W3105693134 hasConcept C2778559731 @default.
- W3105693134 hasConcept C2780472235 @default.
- W3105693134 hasConcept C2780801072 @default.
- W3105693134 hasConcept C44249647 @default.
- W3105693134 hasConcept C530470458 @default.
- W3105693134 hasConcept C58471807 @default.
- W3105693134 hasConcept C71924100 @default.
- W3105693134 hasConcept C72563966 @default.
- W3105693134 hasConceptScore W3105693134C121608353 @default.
- W3105693134 hasConceptScore W3105693134C126322002 @default.
- W3105693134 hasConceptScore W3105693134C126838900 @default.
- W3105693134 hasConceptScore W3105693134C142724271 @default.
- W3105693134 hasConceptScore W3105693134C167135981 @default.
- W3105693134 hasConceptScore W3105693134C2778559731 @default.
- W3105693134 hasConceptScore W3105693134C2780472235 @default.
- W3105693134 hasConceptScore W3105693134C2780801072 @default.
- W3105693134 hasConceptScore W3105693134C44249647 @default.
- W3105693134 hasConceptScore W3105693134C530470458 @default.
- W3105693134 hasConceptScore W3105693134C58471807 @default.
- W3105693134 hasConceptScore W3105693134C71924100 @default.
- W3105693134 hasConceptScore W3105693134C72563966 @default.
- W3105693134 hasIssue "6" @default.
- W3105693134 hasLocation W31056931341 @default.
- W3105693134 hasLocation W31056931342 @default.
- W3105693134 hasLocation W31056931343 @default.
- W3105693134 hasLocation W31056931344 @default.
- W3105693134 hasOpenAccess W3105693134 @default.
- W3105693134 hasPrimaryLocation W31056931341 @default.
- W3105693134 hasRelatedWork W2026854230 @default.
- W3105693134 hasRelatedWork W2149340789 @default.
- W3105693134 hasRelatedWork W2315085516 @default.
- W3105693134 hasRelatedWork W2348133101 @default.
- W3105693134 hasRelatedWork W2603773853 @default.
- W3105693134 hasRelatedWork W3210359220 @default.
- W3105693134 hasRelatedWork W3211649905 @default.