Matches in SemOpenAlex for { <https://semopenalex.org/work/W3105697449> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3105697449 abstract "In biomedical image processing and cancer studies tumor segmentation is one of the most indispensable tasks. Early diagnosis of tumorous cells aids substantially in early treatment planning and enhances the chance of survival of the patient. Manual segmentation of tumor cells in Brain MRI is difficult and time-consuming and also requires expertise in this field. In this paper, we have presented a deep Fully Convolutional Network designed using the TensorFlow library, which can successfully perform segmentation tasks in medical images. Brain MRI images of 225 patients are used as a training data set and a separate set from 20 patients is used to test the performance of the network. Two different loss functions: dice loss and weighted cross-entropy are used in the learning algorithm. We obtained a 0.76 Dice Score coefficient (i.e., 76% of the overlapping between the predicted image and ground truth) for a training of 100 epochs." @default.
- W3105697449 created "2020-11-23" @default.
- W3105697449 creator A5001452299 @default.
- W3105697449 creator A5009838892 @default.
- W3105697449 creator A5028341242 @default.
- W3105697449 creator A5055010341 @default.
- W3105697449 date "2020-08-21" @default.
- W3105697449 modified "2023-10-18" @default.
- W3105697449 title "Tumor Segmentation in Brain MRI using Fully Convolutional Network" @default.
- W3105697449 cites W1641498739 @default.
- W3105697449 cites W1903029394 @default.
- W3105697449 cites W2402144811 @default.
- W3105697449 cites W2538301961 @default.
- W3105697449 cites W2609625738 @default.
- W3105697449 cites W2751069891 @default.
- W3105697449 cites W2900298334 @default.
- W3105697449 cites W2962914239 @default.
- W3105697449 cites W2963448349 @default.
- W3105697449 cites W2964015318 @default.
- W3105697449 doi "https://doi.org/10.1109/icaccm50413.2020.9213036" @default.
- W3105697449 hasPublicationYear "2020" @default.
- W3105697449 type Work @default.
- W3105697449 sameAs 3105697449 @default.
- W3105697449 citedByCount "0" @default.
- W3105697449 crossrefType "proceedings-article" @default.
- W3105697449 hasAuthorship W3105697449A5001452299 @default.
- W3105697449 hasAuthorship W3105697449A5009838892 @default.
- W3105697449 hasAuthorship W3105697449A5028341242 @default.
- W3105697449 hasAuthorship W3105697449A5055010341 @default.
- W3105697449 hasConcept C106301342 @default.
- W3105697449 hasConcept C108583219 @default.
- W3105697449 hasConcept C121332964 @default.
- W3105697449 hasConcept C124504099 @default.
- W3105697449 hasConcept C126838900 @default.
- W3105697449 hasConcept C142724271 @default.
- W3105697449 hasConcept C143409427 @default.
- W3105697449 hasConcept C146849305 @default.
- W3105697449 hasConcept C153180895 @default.
- W3105697449 hasConcept C154945302 @default.
- W3105697449 hasConcept C163892561 @default.
- W3105697449 hasConcept C167981619 @default.
- W3105697449 hasConcept C169903167 @default.
- W3105697449 hasConcept C22029948 @default.
- W3105697449 hasConcept C2524010 @default.
- W3105697449 hasConcept C2779130545 @default.
- W3105697449 hasConcept C31972630 @default.
- W3105697449 hasConcept C33923547 @default.
- W3105697449 hasConcept C41008148 @default.
- W3105697449 hasConcept C58489278 @default.
- W3105697449 hasConcept C62520636 @default.
- W3105697449 hasConcept C71924100 @default.
- W3105697449 hasConcept C81363708 @default.
- W3105697449 hasConcept C89600930 @default.
- W3105697449 hasConceptScore W3105697449C106301342 @default.
- W3105697449 hasConceptScore W3105697449C108583219 @default.
- W3105697449 hasConceptScore W3105697449C121332964 @default.
- W3105697449 hasConceptScore W3105697449C124504099 @default.
- W3105697449 hasConceptScore W3105697449C126838900 @default.
- W3105697449 hasConceptScore W3105697449C142724271 @default.
- W3105697449 hasConceptScore W3105697449C143409427 @default.
- W3105697449 hasConceptScore W3105697449C146849305 @default.
- W3105697449 hasConceptScore W3105697449C153180895 @default.
- W3105697449 hasConceptScore W3105697449C154945302 @default.
- W3105697449 hasConceptScore W3105697449C163892561 @default.
- W3105697449 hasConceptScore W3105697449C167981619 @default.
- W3105697449 hasConceptScore W3105697449C169903167 @default.
- W3105697449 hasConceptScore W3105697449C22029948 @default.
- W3105697449 hasConceptScore W3105697449C2524010 @default.
- W3105697449 hasConceptScore W3105697449C2779130545 @default.
- W3105697449 hasConceptScore W3105697449C31972630 @default.
- W3105697449 hasConceptScore W3105697449C33923547 @default.
- W3105697449 hasConceptScore W3105697449C41008148 @default.
- W3105697449 hasConceptScore W3105697449C58489278 @default.
- W3105697449 hasConceptScore W3105697449C62520636 @default.
- W3105697449 hasConceptScore W3105697449C71924100 @default.
- W3105697449 hasConceptScore W3105697449C81363708 @default.
- W3105697449 hasConceptScore W3105697449C89600930 @default.
- W3105697449 hasLocation W31056974491 @default.
- W3105697449 hasOpenAccess W3105697449 @default.
- W3105697449 hasPrimaryLocation W31056974491 @default.
- W3105697449 hasRelatedWork W1163424 @default.
- W3105697449 hasRelatedWork W12676508 @default.
- W3105697449 hasRelatedWork W1679810 @default.
- W3105697449 hasRelatedWork W2526871 @default.
- W3105697449 hasRelatedWork W3542719 @default.
- W3105697449 hasRelatedWork W4771408 @default.
- W3105697449 hasRelatedWork W4797066 @default.
- W3105697449 hasRelatedWork W6572092 @default.
- W3105697449 hasRelatedWork W7811848 @default.
- W3105697449 hasRelatedWork W9388322 @default.
- W3105697449 isParatext "false" @default.
- W3105697449 isRetracted "false" @default.
- W3105697449 magId "3105697449" @default.
- W3105697449 workType "article" @default.