Matches in SemOpenAlex for { <https://semopenalex.org/work/W3105758412> ?p ?o ?g. }
- W3105758412 endingPage "532" @default.
- W3105758412 startingPage "505" @default.
- W3105758412 abstract "ABSTRACT In this paper, we study the local discontinuous Galerkin (LDG) methods for two‐dimensional nonlinear second‐order elliptic problems of the type u xx + u yy = f ( x , y , u , u x , u y ) , in a rectangular region Ω with classical boundary conditions on the boundary of Ω . Convergence properties for the solution and for the auxiliary variable that approximates its gradient are established. More specifically, we use the duality argument to prove that the errors between the LDG solutions and the exact solutions in the L 2 norm achieve optimal ( p + 1)th order convergence, when tensor product polynomials of degree at most p are used. Moreover, we prove that the gradient of the LDG solution is superclose with order p + 1 toward the gradient of Gauss–Radau projection of the exact solution. The results are valid in two space dimensions on Cartesian meshes using tensor product polynomials of degree p ≥ 1 , and for both mixed Dirichlet–Neumann and periodic boundary conditions. Preliminary numerical experiments indicate that our theoretical findings are optimal." @default.
- W3105758412 created "2020-11-23" @default.
- W3105758412 creator A5068341694 @default.
- W3105758412 date "2020-09-18" @default.
- W3105758412 modified "2023-09-26" @default.
- W3105758412 title "Optimal error estimates of the local discontinuous Galerkin method for nonlinear second‐order elliptic problems on Cartesian grids" @default.
- W3105758412 cites W1568666422 @default.
- W3105758412 cites W1966768630 @default.
- W3105758412 cites W1968183962 @default.
- W3105758412 cites W1976076854 @default.
- W3105758412 cites W1976136035 @default.
- W3105758412 cites W1980072765 @default.
- W3105758412 cites W1987826592 @default.
- W3105758412 cites W1996858170 @default.
- W3105758412 cites W2012938047 @default.
- W3105758412 cites W2014339952 @default.
- W3105758412 cites W2015795390 @default.
- W3105758412 cites W2018809351 @default.
- W3105758412 cites W2021021654 @default.
- W3105758412 cites W2029017626 @default.
- W3105758412 cites W2029725158 @default.
- W3105758412 cites W2031088298 @default.
- W3105758412 cites W2032050953 @default.
- W3105758412 cites W2041458840 @default.
- W3105758412 cites W2044571257 @default.
- W3105758412 cites W2046134068 @default.
- W3105758412 cites W2052501455 @default.
- W3105758412 cites W2054766104 @default.
- W3105758412 cites W2061239584 @default.
- W3105758412 cites W2067749484 @default.
- W3105758412 cites W2069036386 @default.
- W3105758412 cites W2074622236 @default.
- W3105758412 cites W2079263908 @default.
- W3105758412 cites W2086481418 @default.
- W3105758412 cites W2130350269 @default.
- W3105758412 cites W222841820 @default.
- W3105758412 cites W2551057730 @default.
- W3105758412 cites W2603793045 @default.
- W3105758412 cites W2767851319 @default.
- W3105758412 cites W2782024549 @default.
- W3105758412 cites W3103241605 @default.
- W3105758412 cites W4205180919 @default.
- W3105758412 cites W4233665781 @default.
- W3105758412 doi "https://doi.org/10.1002/num.22538" @default.
- W3105758412 hasPublicationYear "2020" @default.
- W3105758412 type Work @default.
- W3105758412 sameAs 3105758412 @default.
- W3105758412 citedByCount "1" @default.
- W3105758412 countsByYear W31057584122021 @default.
- W3105758412 crossrefType "journal-article" @default.
- W3105758412 hasAuthorship W3105758412A5068341694 @default.
- W3105758412 hasConcept C118615104 @default.
- W3105758412 hasConcept C121332964 @default.
- W3105758412 hasConcept C134306372 @default.
- W3105758412 hasConcept C135628077 @default.
- W3105758412 hasConcept C158622935 @default.
- W3105758412 hasConcept C17744445 @default.
- W3105758412 hasConcept C182310444 @default.
- W3105758412 hasConcept C186899397 @default.
- W3105758412 hasConcept C191795146 @default.
- W3105758412 hasConcept C199539241 @default.
- W3105758412 hasConcept C202444582 @default.
- W3105758412 hasConcept C24890656 @default.
- W3105758412 hasConcept C25878781 @default.
- W3105758412 hasConcept C2775997480 @default.
- W3105758412 hasConcept C28826006 @default.
- W3105758412 hasConcept C33923547 @default.
- W3105758412 hasConcept C51255310 @default.
- W3105758412 hasConcept C62520636 @default.
- W3105758412 hasConcept C65236422 @default.
- W3105758412 hasConcept C90119067 @default.
- W3105758412 hasConcept C92244383 @default.
- W3105758412 hasConcept C97355855 @default.
- W3105758412 hasConceptScore W3105758412C118615104 @default.
- W3105758412 hasConceptScore W3105758412C121332964 @default.
- W3105758412 hasConceptScore W3105758412C134306372 @default.
- W3105758412 hasConceptScore W3105758412C135628077 @default.
- W3105758412 hasConceptScore W3105758412C158622935 @default.
- W3105758412 hasConceptScore W3105758412C17744445 @default.
- W3105758412 hasConceptScore W3105758412C182310444 @default.
- W3105758412 hasConceptScore W3105758412C186899397 @default.
- W3105758412 hasConceptScore W3105758412C191795146 @default.
- W3105758412 hasConceptScore W3105758412C199539241 @default.
- W3105758412 hasConceptScore W3105758412C202444582 @default.
- W3105758412 hasConceptScore W3105758412C24890656 @default.
- W3105758412 hasConceptScore W3105758412C25878781 @default.
- W3105758412 hasConceptScore W3105758412C2775997480 @default.
- W3105758412 hasConceptScore W3105758412C28826006 @default.
- W3105758412 hasConceptScore W3105758412C33923547 @default.
- W3105758412 hasConceptScore W3105758412C51255310 @default.
- W3105758412 hasConceptScore W3105758412C62520636 @default.
- W3105758412 hasConceptScore W3105758412C65236422 @default.
- W3105758412 hasConceptScore W3105758412C90119067 @default.
- W3105758412 hasConceptScore W3105758412C92244383 @default.
- W3105758412 hasConceptScore W3105758412C97355855 @default.
- W3105758412 hasIssue "1" @default.
- W3105758412 hasLocation W31057584121 @default.
- W3105758412 hasOpenAccess W3105758412 @default.