Matches in SemOpenAlex for { <https://semopenalex.org/work/W3105929354> ?p ?o ?g. }
- W3105929354 abstract "Coarse-graining has become an area of tremendous importance within many different research fields. For molecular simulation, coarse-graining bears the promise of finding simplified models such that long-time simulations of large-scale systems become computationally tractable. While significant progress has been made in tuning thermodynamic properties of reduced models, it remains a key challenge to ensure that relevant kinetic properties are retained by coarse-grained dynamical systems. In this study, we focus on data-driven methods to preserve the rare-event kinetics of the original system and make use of their close connection to the low-lying spectrum of the system’s generator. Building on work by Crommelin and Vanden-Eijnden [Multiscale Model. Simul. 9, 1588 (2011)], we present a general framework, called spectral matching, which directly targets the generator’s leading eigenvalue equations when learning parameters for coarse-grained models. We discuss different parametric models for effective dynamics and derive the resulting data-based regression problems. We show that spectral matching can be used to learn effective potentials which retain the slow dynamics but also to correct the dynamics induced by existing techniques, such as force matching." @default.
- W3105929354 created "2020-11-23" @default.
- W3105929354 creator A5008828203 @default.
- W3105929354 creator A5015621241 @default.
- W3105929354 creator A5061903235 @default.
- W3105929354 date "2019-07-28" @default.
- W3105929354 modified "2023-10-16" @default.
- W3105929354 title "Coarse-graining molecular systems by spectral matching" @default.
- W3105929354 cites W1594922720 @default.
- W3105929354 cites W1964694986 @default.
- W3105929354 cites W1971725855 @default.
- W3105929354 cites W1982141259 @default.
- W3105929354 cites W1986356457 @default.
- W3105929354 cites W1989544083 @default.
- W3105929354 cites W1992898397 @default.
- W3105929354 cites W2008418858 @default.
- W3105929354 cites W2009447971 @default.
- W3105929354 cites W2012029966 @default.
- W3105929354 cites W2016887696 @default.
- W3105929354 cites W2026737855 @default.
- W3105929354 cites W2033192122 @default.
- W3105929354 cites W2036239645 @default.
- W3105929354 cites W2046799939 @default.
- W3105929354 cites W2049286183 @default.
- W3105929354 cites W2051864856 @default.
- W3105929354 cites W2060174126 @default.
- W3105929354 cites W2061308254 @default.
- W3105929354 cites W2063021109 @default.
- W3105929354 cites W2065864578 @default.
- W3105929354 cites W2074388175 @default.
- W3105929354 cites W2085213650 @default.
- W3105929354 cites W2095530874 @default.
- W3105929354 cites W2101116262 @default.
- W3105929354 cites W2107056658 @default.
- W3105929354 cites W2115961344 @default.
- W3105929354 cites W2119267663 @default.
- W3105929354 cites W2122825543 @default.
- W3105929354 cites W2124138287 @default.
- W3105929354 cites W2131866773 @default.
- W3105929354 cites W2136408597 @default.
- W3105929354 cites W2139158220 @default.
- W3105929354 cites W2147848673 @default.
- W3105929354 cites W2159565091 @default.
- W3105929354 cites W2164193727 @default.
- W3105929354 cites W2168536864 @default.
- W3105929354 cites W2226825552 @default.
- W3105929354 cites W2239232218 @default.
- W3105929354 cites W2324635772 @default.
- W3105929354 cites W2473581781 @default.
- W3105929354 cites W2577671591 @default.
- W3105929354 cites W2595314721 @default.
- W3105929354 cites W2610699746 @default.
- W3105929354 cites W2714824404 @default.
- W3105929354 cites W2774992309 @default.
- W3105929354 cites W2884338472 @default.
- W3105929354 cites W2901995873 @default.
- W3105929354 cites W2913376343 @default.
- W3105929354 cites W2963426504 @default.
- W3105929354 cites W2963908247 @default.
- W3105929354 cites W2964129632 @default.
- W3105929354 cites W3099423575 @default.
- W3105929354 cites W3103390675 @default.
- W3105929354 cites W3104338246 @default.
- W3105929354 cites W585413800 @default.
- W3105929354 doi "https://doi.org/10.1063/1.5100131" @default.
- W3105929354 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31370528" @default.
- W3105929354 hasPublicationYear "2019" @default.
- W3105929354 type Work @default.
- W3105929354 sameAs 3105929354 @default.
- W3105929354 citedByCount "28" @default.
- W3105929354 countsByYear W31059293542019 @default.
- W3105929354 countsByYear W31059293542020 @default.
- W3105929354 countsByYear W31059293542021 @default.
- W3105929354 countsByYear W31059293542022 @default.
- W3105929354 countsByYear W31059293542023 @default.
- W3105929354 crossrefType "journal-article" @default.
- W3105929354 hasAuthorship W3105929354A5008828203 @default.
- W3105929354 hasAuthorship W3105929354A5015621241 @default.
- W3105929354 hasAuthorship W3105929354A5061903235 @default.
- W3105929354 hasBestOaLocation W31059293541 @default.
- W3105929354 hasConcept C105795698 @default.
- W3105929354 hasConcept C111919701 @default.
- W3105929354 hasConcept C117251300 @default.
- W3105929354 hasConcept C121332964 @default.
- W3105929354 hasConcept C121864883 @default.
- W3105929354 hasConcept C158693339 @default.
- W3105929354 hasConcept C163258240 @default.
- W3105929354 hasConcept C165064840 @default.
- W3105929354 hasConcept C177774035 @default.
- W3105929354 hasConcept C26517878 @default.
- W3105929354 hasConcept C2780992000 @default.
- W3105929354 hasConcept C33923547 @default.
- W3105929354 hasConcept C38652104 @default.
- W3105929354 hasConcept C41008148 @default.
- W3105929354 hasConcept C59593255 @default.
- W3105929354 hasConcept C62520636 @default.
- W3105929354 hasConcept C80444323 @default.
- W3105929354 hasConceptScore W3105929354C105795698 @default.
- W3105929354 hasConceptScore W3105929354C111919701 @default.
- W3105929354 hasConceptScore W3105929354C117251300 @default.