Matches in SemOpenAlex for { <https://semopenalex.org/work/W3105994037> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W3105994037 endingPage "337" @default.
- W3105994037 startingPage "333" @default.
- W3105994037 abstract "In 1961, Erdős, Ginzburg and Ziv proved a remarkable theorem stating that each set of 2n−1 integers contains a subset of size n, the sum of whose elements is divisible by n. We will prove a similar result for pairs of integers, i.e. planar lattice-points, usually referred to as Kemnitz’ conjecture." @default.
- W3105994037 created "2020-11-23" @default.
- W3105994037 creator A5042704391 @default.
- W3105994037 date "2007-06-01" @default.
- W3105994037 modified "2023-10-05" @default.
- W3105994037 title "On Kemnitz’ conjecture concerning lattice-points in the plane" @default.
- W3105994037 cites W1489774662 @default.
- W3105994037 cites W1978948998 @default.
- W3105994037 cites W1982101609 @default.
- W3105994037 cites W2073661780 @default.
- W3105994037 doi "https://doi.org/10.1007/s11139-006-0256-y" @default.
- W3105994037 hasPublicationYear "2007" @default.
- W3105994037 type Work @default.
- W3105994037 sameAs 3105994037 @default.
- W3105994037 citedByCount "72" @default.
- W3105994037 countsByYear W31059940372012 @default.
- W3105994037 countsByYear W31059940372013 @default.
- W3105994037 countsByYear W31059940372014 @default.
- W3105994037 countsByYear W31059940372015 @default.
- W3105994037 countsByYear W31059940372016 @default.
- W3105994037 countsByYear W31059940372017 @default.
- W3105994037 countsByYear W31059940372018 @default.
- W3105994037 countsByYear W31059940372019 @default.
- W3105994037 countsByYear W31059940372020 @default.
- W3105994037 countsByYear W31059940372021 @default.
- W3105994037 countsByYear W31059940372022 @default.
- W3105994037 countsByYear W31059940372023 @default.
- W3105994037 crossrefType "journal-article" @default.
- W3105994037 hasAuthorship W3105994037A5042704391 @default.
- W3105994037 hasBestOaLocation W31059940372 @default.
- W3105994037 hasConcept C114614502 @default.
- W3105994037 hasConcept C118615104 @default.
- W3105994037 hasConcept C121332964 @default.
- W3105994037 hasConcept C169654258 @default.
- W3105994037 hasConcept C17825722 @default.
- W3105994037 hasConcept C24890656 @default.
- W3105994037 hasConcept C2524010 @default.
- W3105994037 hasConcept C2780990831 @default.
- W3105994037 hasConcept C2781204021 @default.
- W3105994037 hasConcept C33923547 @default.
- W3105994037 hasConceptScore W3105994037C114614502 @default.
- W3105994037 hasConceptScore W3105994037C118615104 @default.
- W3105994037 hasConceptScore W3105994037C121332964 @default.
- W3105994037 hasConceptScore W3105994037C169654258 @default.
- W3105994037 hasConceptScore W3105994037C17825722 @default.
- W3105994037 hasConceptScore W3105994037C24890656 @default.
- W3105994037 hasConceptScore W3105994037C2524010 @default.
- W3105994037 hasConceptScore W3105994037C2780990831 @default.
- W3105994037 hasConceptScore W3105994037C2781204021 @default.
- W3105994037 hasConceptScore W3105994037C33923547 @default.
- W3105994037 hasIssue "1-3" @default.
- W3105994037 hasLocation W31059940371 @default.
- W3105994037 hasLocation W31059940372 @default.
- W3105994037 hasOpenAccess W3105994037 @default.
- W3105994037 hasPrimaryLocation W31059940371 @default.
- W3105994037 hasRelatedWork W1529715114 @default.
- W3105994037 hasRelatedWork W1978042415 @default.
- W3105994037 hasRelatedWork W1996842796 @default.
- W3105994037 hasRelatedWork W2022017350 @default.
- W3105994037 hasRelatedWork W2051224659 @default.
- W3105994037 hasRelatedWork W2120826334 @default.
- W3105994037 hasRelatedWork W2740334431 @default.
- W3105994037 hasRelatedWork W3038654277 @default.
- W3105994037 hasRelatedWork W3119737209 @default.
- W3105994037 hasRelatedWork W4212808623 @default.
- W3105994037 hasVolume "13" @default.
- W3105994037 isParatext "false" @default.
- W3105994037 isRetracted "false" @default.
- W3105994037 magId "3105994037" @default.
- W3105994037 workType "article" @default.