Matches in SemOpenAlex for { <https://semopenalex.org/work/W3106013875> ?p ?o ?g. }
- W3106013875 abstract "Prostate radiotherapy is a well established curative oncology modality, which in future will use Magnetic Resonance Imaging (MRI)-based radiotherapy for daily adaptive radiotherapy target definition. However the time needed to delineate the prostate from MRI data accurately is a time consuming process. Deep learning has been identified as a potential new technology for the delivery of precision radiotherapy in prostate cancer, where accurate prostate segmentation helps in cancer detection and therapy. However, the trained models can be limited in their application to clinical setting due to different acquisition protocols, limited publicly available datasets, where the size of the datasets are relatively small. Therefore, to explore the field of prostate segmentation and to discover a generalisable solution, we review the state-of-the-art deep learning algorithms in MR prostate segmentation; provide insights to the field by discussing their limitations and strengths; and propose an optimised 2D U-Net for MR prostate segmentation. We evaluate the performance on four publicly available datasets using Dice Similarity Coefficient (DSC) as performance metric. Our experiments include within dataset evaluation and cross-dataset evaluation. The best result is achieved by composite evaluation (DSC of 0.9427 on Decathlon test set) and the poorest result is achieved by cross-dataset evaluation (DSC of 0.5892, Prostate X training set, Promise 12 testing set). We outline the challenges and provide recommendations for future work. Our research provides a new perspective to MR prostate segmentation and more importantly, we provide standardised experiment settings for researchers to evaluate their algorithms. Our code is available at this https URL_Prostate." @default.
- W3106013875 created "2020-11-23" @default.
- W3106013875 creator A5022976515 @default.
- W3106013875 creator A5025368737 @default.
- W3106013875 creator A5035901116 @default.
- W3106013875 creator A5037771946 @default.
- W3106013875 creator A5040767315 @default.
- W3106013875 creator A5051813662 @default.
- W3106013875 date "2020-11-16" @default.
- W3106013875 modified "2023-09-27" @default.
- W3106013875 title "Deep learning in magnetic resonance prostate segmentation: A review and a new perspective." @default.
- W3106013875 cites W1667869507 @default.
- W3106013875 cites W1686810756 @default.
- W3106013875 cites W1903029394 @default.
- W3106013875 cites W1982668309 @default.
- W3106013875 cites W2049522781 @default.
- W3106013875 cites W2052617496 @default.
- W3106013875 cites W2106033751 @default.
- W3106013875 cites W2127412835 @default.
- W3106013875 cites W2132264805 @default.
- W3106013875 cites W2276540306 @default.
- W3106013875 cites W2323200062 @default.
- W3106013875 cites W2402601207 @default.
- W3106013875 cites W2465092116 @default.
- W3106013875 cites W2474824655 @default.
- W3106013875 cites W2531931036 @default.
- W3106013875 cites W2604785265 @default.
- W3106013875 cites W2604790786 @default.
- W3106013875 cites W2607825388 @default.
- W3106013875 cites W2614995636 @default.
- W3106013875 cites W2748604568 @default.
- W3106013875 cites W2762363380 @default.
- W3106013875 cites W2765407302 @default.
- W3106013875 cites W2766076071 @default.
- W3106013875 cites W2767171201 @default.
- W3106013875 cites W2782598129 @default.
- W3106013875 cites W2788906943 @default.
- W3106013875 cites W2792466349 @default.
- W3106013875 cites W2798122215 @default.
- W3106013875 cites W2811374795 @default.
- W3106013875 cites W2889822862 @default.
- W3106013875 cites W2893299523 @default.
- W3106013875 cites W2896001621 @default.
- W3106013875 cites W2897236707 @default.
- W3106013875 cites W2902344291 @default.
- W3106013875 cites W2914806156 @default.
- W3106013875 cites W2915126261 @default.
- W3106013875 cites W2921861056 @default.
- W3106013875 cites W2923997689 @default.
- W3106013875 cites W2928133111 @default.
- W3106013875 cites W2939917862 @default.
- W3106013875 cites W2945968958 @default.
- W3106013875 cites W2947781138 @default.
- W3106013875 cites W2950220847 @default.
- W3106013875 cites W2950321108 @default.
- W3106013875 cites W2958864515 @default.
- W3106013875 cites W2959556310 @default.
- W3106013875 cites W2962914239 @default.
- W3106013875 cites W2963073614 @default.
- W3106013875 cites W2963351448 @default.
- W3106013875 cites W2963420272 @default.
- W3106013875 cites W2964334073 @default.
- W3106013875 cites W2968917279 @default.
- W3106013875 cites W2970803838 @default.
- W3106013875 cites W2981959691 @default.
- W3106013875 cites W2988053426 @default.
- W3106013875 cites W2990096221 @default.
- W3106013875 cites W2990873191 @default.
- W3106013875 cites W3013376562 @default.
- W3106013875 cites W3099805905 @default.
- W3106013875 cites W3127062143 @default.
- W3106013875 hasPublicationYear "2020" @default.
- W3106013875 type Work @default.
- W3106013875 sameAs 3106013875 @default.
- W3106013875 citedByCount "1" @default.
- W3106013875 countsByYear W31060138752021 @default.
- W3106013875 crossrefType "posted-content" @default.
- W3106013875 hasAuthorship W3106013875A5022976515 @default.
- W3106013875 hasAuthorship W3106013875A5025368737 @default.
- W3106013875 hasAuthorship W3106013875A5035901116 @default.
- W3106013875 hasAuthorship W3106013875A5037771946 @default.
- W3106013875 hasAuthorship W3106013875A5040767315 @default.
- W3106013875 hasAuthorship W3106013875A5051813662 @default.
- W3106013875 hasConcept C108583219 @default.
- W3106013875 hasConcept C119857082 @default.
- W3106013875 hasConcept C121608353 @default.
- W3106013875 hasConcept C126322002 @default.
- W3106013875 hasConcept C126838900 @default.
- W3106013875 hasConcept C143409427 @default.
- W3106013875 hasConcept C154945302 @default.
- W3106013875 hasConcept C162324750 @default.
- W3106013875 hasConcept C176217482 @default.
- W3106013875 hasConcept C19527891 @default.
- W3106013875 hasConcept C21547014 @default.
- W3106013875 hasConcept C2776235491 @default.
- W3106013875 hasConcept C2780192828 @default.
- W3106013875 hasConcept C2780226545 @default.
- W3106013875 hasConcept C41008148 @default.
- W3106013875 hasConcept C71924100 @default.
- W3106013875 hasConcept C89600930 @default.