Matches in SemOpenAlex for { <https://semopenalex.org/work/W3106104632> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W3106104632 abstract "Dealing with financial time series brings many challenges to data modeling, given the existence of heavy tails and extreme return values caused by external events, such as politics, natural disasters, economical events, or even speculation. Providing reliable and interpretable insights to market agents, based on statistical models, to base strategic decisions on building assets portfolios, taking arbitrage decisions, and managing investment risks is crucial for avoiding losses and correctly pricing assets for developing successful investment strategies. Rego and Santos (2020) proposed the Non-Gaussian Stochastic Volatility Model with Jumps (NGSVJ) for market volatility evaluation, which includes automatic inference procedure that allows the model to be fast enough to bring tangible results for the user, using an ordinary home computer, to perform trading operations. The Dynamic Models (DM) class, on which the NGSVJ is based, has a flexible structure that enables the inclusion of new features on the models and has implementation simplicity from the computational perspective. The DM class of models is still unexplored for financial applications when compared to the other classes of models commonly used on literature, mainly based on Stochastic Volatility (SV) and Generalized Autoregressive Conditional Heteroskedasticity (GARCH) classes of models. In this thesis, several developments are made using as basis the DM class and the NGSVJ model. For dealing with a single asset, or univariate, financial time series, developments are made to the NGSVJ to be able to estimate the degree of freedom of the gamma mixture parameter and include a Hiden Markov (HMM) to give flexibility and interpretability to the model for applications on arbitrage intraday market operations. For dealing with multiple assets portfolio, or multivariate, financial time series the Multivariate Stochastic Volatility Model with Jumps (MSVJ) was developed, based on DM structure, to enable financial agents to estimate the volatility and correlation between portfolio assets and effectively develop a risk management strategy. This thesis provides a wide set of statistical models, based on DM class, that can be used in finance for taking arbitrage and investment decisions, whether it is used for analyzing a single asset or a portfolio. Simulation studies are presented as well as applications on the S&P 500 market index, commodity derivatives, and exchange rates, to illustrate model performance. The proposed models have highly interpretable results, bringing major developments to the DM class of models and their applications on finance. The proposed models are robust in the sense to incorporate several stylized characteristics of return data, bringing major developments to the NGSVJ and their applications." @default.
- W3106104632 created "2020-11-23" @default.
- W3106104632 creator A5076019018 @default.
- W3106104632 date "2020-08-28" @default.
- W3106104632 modified "2023-09-27" @default.
- W3106104632 title "Dynamic volatility models for market risk and portfolio analysis" @default.
- W3106104632 hasPublicationYear "2020" @default.
- W3106104632 type Work @default.
- W3106104632 sameAs 3106104632 @default.
- W3106104632 citedByCount "0" @default.
- W3106104632 crossrefType "journal-article" @default.
- W3106104632 hasAuthorship W3106104632A5076019018 @default.
- W3106104632 hasConcept C10138342 @default.
- W3106104632 hasConcept C149782125 @default.
- W3106104632 hasConcept C154945302 @default.
- W3106104632 hasConcept C162324750 @default.
- W3106104632 hasConcept C23922673 @default.
- W3106104632 hasConcept C2780821815 @default.
- W3106104632 hasConcept C2781067378 @default.
- W3106104632 hasConcept C41008148 @default.
- W3106104632 hasConcept C85393063 @default.
- W3106104632 hasConcept C91602232 @default.
- W3106104632 hasConceptScore W3106104632C10138342 @default.
- W3106104632 hasConceptScore W3106104632C149782125 @default.
- W3106104632 hasConceptScore W3106104632C154945302 @default.
- W3106104632 hasConceptScore W3106104632C162324750 @default.
- W3106104632 hasConceptScore W3106104632C23922673 @default.
- W3106104632 hasConceptScore W3106104632C2780821815 @default.
- W3106104632 hasConceptScore W3106104632C2781067378 @default.
- W3106104632 hasConceptScore W3106104632C41008148 @default.
- W3106104632 hasConceptScore W3106104632C85393063 @default.
- W3106104632 hasConceptScore W3106104632C91602232 @default.
- W3106104632 hasLocation W31061046321 @default.
- W3106104632 hasOpenAccess W3106104632 @default.
- W3106104632 hasPrimaryLocation W31061046321 @default.
- W3106104632 hasRelatedWork W1493000094 @default.
- W3106104632 hasRelatedWork W157392371 @default.
- W3106104632 hasRelatedWork W1607074368 @default.
- W3106104632 hasRelatedWork W173106772 @default.
- W3106104632 hasRelatedWork W1741849548 @default.
- W3106104632 hasRelatedWork W2003902306 @default.
- W3106104632 hasRelatedWork W2133986364 @default.
- W3106104632 hasRelatedWork W2171838052 @default.
- W3106104632 hasRelatedWork W2249037233 @default.
- W3106104632 hasRelatedWork W2379837201 @default.
- W3106104632 hasRelatedWork W2481778775 @default.
- W3106104632 hasRelatedWork W2572628886 @default.
- W3106104632 hasRelatedWork W2904464254 @default.
- W3106104632 hasRelatedWork W2927831250 @default.
- W3106104632 hasRelatedWork W3119007281 @default.
- W3106104632 hasRelatedWork W3121335073 @default.
- W3106104632 hasRelatedWork W3123338834 @default.
- W3106104632 hasRelatedWork W3124504548 @default.
- W3106104632 hasRelatedWork W406432984 @default.
- W3106104632 hasRelatedWork W635189952 @default.
- W3106104632 isParatext "false" @default.
- W3106104632 isRetracted "false" @default.
- W3106104632 magId "3106104632" @default.
- W3106104632 workType "article" @default.