Matches in SemOpenAlex for { <https://semopenalex.org/work/W3106142443> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3106142443 startingPage "21" @default.
- W3106142443 abstract "Asphaltenes are precipitated and deposited during gas injection and this causes pore throat reduction, permeability reduction and wettability reversal. The result is reduced oil produced thereby leading to sizable revenue loss by field operators. To mitigate or completely prevent the occurrence of this phenomenon, this work has utilised Hybrid Genetic Algorithm Particle Swarm Optimisation-Artificial Neural Network (HGAPSO-ANN) for predicting the amount of asphaltenes deposited in the reservoir during gas injection. A number of methods are available for predicting the amount of asphaltenes deposited but some of them are either too expensive to execute or fraught with errors and deviations. This is due to the nature of asphaltene which is complicated and ambiguous. Some of the methods in existence include correlation with solvent properties, thermodynamic models and recently connectionist models (neural networks). There is however, no publication in the literature on using hybrid algorithms with neural networks to predict asphaltene precipitation during gas injection and this becomes an interesting area of research considering the enormous benefits that would be obtained from a robust hybrid asphaltene precipitation prediction model. The developed model performed well with an AARE of 0.09. This is lower than AARE values reported by Hue et al (2000), Rostami and Manshad (2010), Manshad et al (2015) which were 0.183, 0.153, and 0.121 respectively From the results of the model it can be seen that HGAPSO-ANN is more accurate in predicting asphaltene precipitation than other existing predictive models consulted. This method can therefore, be used as a decision making tool by field operators to set up procedures for the prevention or mitigation of asphaltene precipitation during gas injection. This will help prevent revenue losses and increase profitability of recovering hydrocarbons using gas injection." @default.
- W3106142443 created "2020-11-23" @default.
- W3106142443 creator A5002186721 @default.
- W3106142443 creator A5044265449 @default.
- W3106142443 creator A5045562285 @default.
- W3106142443 date "2020-10-27" @default.
- W3106142443 modified "2023-09-23" @default.
- W3106142443 title "Prediction of Asphaltene Precipitation During Gas Injection Using Hybrid Genetic Algorithm and Particle Swarm Optimisation" @default.
- W3106142443 doi "https://doi.org/10.11648/j.ajaic.20200402.12" @default.
- W3106142443 hasPublicationYear "2020" @default.
- W3106142443 type Work @default.
- W3106142443 sameAs 3106142443 @default.
- W3106142443 citedByCount "0" @default.
- W3106142443 crossrefType "journal-article" @default.
- W3106142443 hasAuthorship W3106142443A5002186721 @default.
- W3106142443 hasAuthorship W3106142443A5044265449 @default.
- W3106142443 hasAuthorship W3106142443A5045562285 @default.
- W3106142443 hasConcept C107054158 @default.
- W3106142443 hasConcept C11413529 @default.
- W3106142443 hasConcept C119857082 @default.
- W3106142443 hasConcept C121332964 @default.
- W3106142443 hasConcept C127313418 @default.
- W3106142443 hasConcept C127413603 @default.
- W3106142443 hasConcept C153294291 @default.
- W3106142443 hasConcept C154945302 @default.
- W3106142443 hasConcept C192562407 @default.
- W3106142443 hasConcept C21880701 @default.
- W3106142443 hasConcept C41008148 @default.
- W3106142443 hasConcept C42360764 @default.
- W3106142443 hasConcept C50644808 @default.
- W3106142443 hasConcept C65324659 @default.
- W3106142443 hasConcept C78762247 @default.
- W3106142443 hasConcept C85617194 @default.
- W3106142443 hasConcept C8880873 @default.
- W3106142443 hasConceptScore W3106142443C107054158 @default.
- W3106142443 hasConceptScore W3106142443C11413529 @default.
- W3106142443 hasConceptScore W3106142443C119857082 @default.
- W3106142443 hasConceptScore W3106142443C121332964 @default.
- W3106142443 hasConceptScore W3106142443C127313418 @default.
- W3106142443 hasConceptScore W3106142443C127413603 @default.
- W3106142443 hasConceptScore W3106142443C153294291 @default.
- W3106142443 hasConceptScore W3106142443C154945302 @default.
- W3106142443 hasConceptScore W3106142443C192562407 @default.
- W3106142443 hasConceptScore W3106142443C21880701 @default.
- W3106142443 hasConceptScore W3106142443C41008148 @default.
- W3106142443 hasConceptScore W3106142443C42360764 @default.
- W3106142443 hasConceptScore W3106142443C50644808 @default.
- W3106142443 hasConceptScore W3106142443C65324659 @default.
- W3106142443 hasConceptScore W3106142443C78762247 @default.
- W3106142443 hasConceptScore W3106142443C85617194 @default.
- W3106142443 hasConceptScore W3106142443C8880873 @default.
- W3106142443 hasIssue "2" @default.
- W3106142443 hasLocation W31061424431 @default.
- W3106142443 hasOpenAccess W3106142443 @default.
- W3106142443 hasPrimaryLocation W31061424431 @default.
- W3106142443 hasRelatedWork W1968985240 @default.
- W3106142443 hasRelatedWork W1996276774 @default.
- W3106142443 hasRelatedWork W1999883131 @default.
- W3106142443 hasRelatedWork W2061871963 @default.
- W3106142443 hasRelatedWork W2063512808 @default.
- W3106142443 hasRelatedWork W2063751653 @default.
- W3106142443 hasRelatedWork W2076143512 @default.
- W3106142443 hasRelatedWork W2076558783 @default.
- W3106142443 hasRelatedWork W2077037111 @default.
- W3106142443 hasRelatedWork W2077227124 @default.
- W3106142443 hasRelatedWork W2093367787 @default.
- W3106142443 hasRelatedWork W2094953656 @default.
- W3106142443 hasRelatedWork W2146088741 @default.
- W3106142443 hasRelatedWork W2772727152 @default.
- W3106142443 hasRelatedWork W2780711225 @default.
- W3106142443 hasRelatedWork W2782283597 @default.
- W3106142443 hasRelatedWork W2790589006 @default.
- W3106142443 hasRelatedWork W2800743765 @default.
- W3106142443 hasRelatedWork W2885635791 @default.
- W3106142443 hasRelatedWork W2989900096 @default.
- W3106142443 hasVolume "4" @default.
- W3106142443 isParatext "false" @default.
- W3106142443 isRetracted "false" @default.
- W3106142443 magId "3106142443" @default.
- W3106142443 workType "article" @default.