Matches in SemOpenAlex for { <https://semopenalex.org/work/W3106153623> ?p ?o ?g. }
- W3106153623 endingPage "1193" @default.
- W3106153623 startingPage "1184" @default.
- W3106153623 abstract "Atomic neural networks (ANNs) constitute a class of machine learning methods for predicting potential energy surfaces and physicochemical properties of molecules and materials. Despite many successes, developing interpretable ANN architectures and implementing existing ones efficiently are still challenging. This calls for reliable, general-purpose, and open-source codes. Here, we present a python library named PiNN as a solution toward this goal. In PiNN, we designed a new interpretable and high-performing graph convolutional neural network variant, PiNet, as well as implemented the established Behler–Parrinello neural network. These implementations were tested using datasets of isolated small molecules, crystalline materials, liquid water, and an aqueous alkaline electrolyte. PiNN comes with a visualizer called PiNNBoard to extract chemical insight “learned” by ANNs. It provides analytical stress tensor calculations and interfaces to both the atomic simulation environment and a development version of the Amsterdam Modeling Suite. Moreover, PiNN is highly modularized, which makes it useful not only as a standalone package but also as a chain of tools to develop and to implement novel ANNs. The code is distributed under a permissive BSD license and is freely accessible at https://github.com/Teoroo-CMC/PiNN/ with full documentation and tutorials." @default.
- W3106153623 created "2020-11-23" @default.
- W3106153623 creator A5008875256 @default.
- W3106153623 creator A5051976495 @default.
- W3106153623 creator A5078031243 @default.
- W3106153623 creator A5084183444 @default.
- W3106153623 creator A5089966579 @default.
- W3106153623 date "2020-01-14" @default.
- W3106153623 modified "2023-09-25" @default.
- W3106153623 title "PiNN: A Python Library for Building Atomic Neural Networks of Molecules and Materials" @default.
- W3106153623 cites W1131018472 @default.
- W3106153623 cites W1810694562 @default.
- W3106153623 cites W1849277567 @default.
- W3106153623 cites W1967108496 @default.
- W3106153623 cites W1970486977 @default.
- W3106153623 cites W1975997599 @default.
- W3106153623 cites W1991149034 @default.
- W3106153623 cites W1992985800 @default.
- W3106153623 cites W2000290293 @default.
- W3106153623 cites W2023271753 @default.
- W3106153623 cites W2025444507 @default.
- W3106153623 cites W2029413789 @default.
- W3106153623 cites W2035266068 @default.
- W3106153623 cites W2036524141 @default.
- W3106153623 cites W2041902442 @default.
- W3106153623 cites W2055526416 @default.
- W3106153623 cites W2059838064 @default.
- W3106153623 cites W2080635178 @default.
- W3106153623 cites W2086957099 @default.
- W3106153623 cites W2092157292 @default.
- W3106153623 cites W2143981217 @default.
- W3106153623 cites W2146292423 @default.
- W3106153623 cites W2148284063 @default.
- W3106153623 cites W2200589053 @default.
- W3106153623 cites W2278970271 @default.
- W3106153623 cites W2290847742 @default.
- W3106153623 cites W2323403662 @default.
- W3106153623 cites W2410722695 @default.
- W3106153623 cites W2470768373 @default.
- W3106153623 cites W2473258132 @default.
- W3106153623 cites W2480381460 @default.
- W3106153623 cites W2527189750 @default.
- W3106153623 cites W2541404351 @default.
- W3106153623 cites W2542537453 @default.
- W3106153623 cites W2601081289 @default.
- W3106153623 cites W2620687153 @default.
- W3106153623 cites W2742127985 @default.
- W3106153623 cites W2746244909 @default.
- W3106153623 cites W2760908003 @default.
- W3106153623 cites W2766856748 @default.
- W3106153623 cites W2768213699 @default.
- W3106153623 cites W2770922882 @default.
- W3106153623 cites W2775708988 @default.
- W3106153623 cites W2776192919 @default.
- W3106153623 cites W2778051509 @default.
- W3106153623 cites W2782772320 @default.
- W3106153623 cites W2800168263 @default.
- W3106153623 cites W2807640093 @default.
- W3106153623 cites W2884430236 @default.
- W3106153623 cites W2884817966 @default.
- W3106153623 cites W2886120629 @default.
- W3106153623 cites W2891365537 @default.
- W3106153623 cites W2896564993 @default.
- W3106153623 cites W2899557352 @default.
- W3106153623 cites W2910857709 @default.
- W3106153623 cites W2913034365 @default.
- W3106153623 cites W2913558890 @default.
- W3106153623 cites W2914218087 @default.
- W3106153623 cites W2923693308 @default.
- W3106153623 cites W2949095042 @default.
- W3106153623 cites W2964268718 @default.
- W3106153623 cites W2967766509 @default.
- W3106153623 cites W2978694339 @default.
- W3106153623 cites W3099803468 @default.
- W3106153623 cites W3101510464 @default.
- W3106153623 cites W3101643101 @default.
- W3106153623 cites W3101744125 @default.
- W3106153623 cites W3102659967 @default.
- W3106153623 doi "https://doi.org/10.1021/acs.jcim.9b00994" @default.
- W3106153623 hasPublicationYear "2020" @default.
- W3106153623 type Work @default.
- W3106153623 sameAs 3106153623 @default.
- W3106153623 citedByCount "41" @default.
- W3106153623 countsByYear W31061536232020 @default.
- W3106153623 countsByYear W31061536232021 @default.
- W3106153623 countsByYear W31061536232022 @default.
- W3106153623 countsByYear W31061536232023 @default.
- W3106153623 crossrefType "journal-article" @default.
- W3106153623 hasAuthorship W3106153623A5008875256 @default.
- W3106153623 hasAuthorship W3106153623A5051976495 @default.
- W3106153623 hasAuthorship W3106153623A5078031243 @default.
- W3106153623 hasAuthorship W3106153623A5084183444 @default.
- W3106153623 hasAuthorship W3106153623A5089966579 @default.
- W3106153623 hasBestOaLocation W31061536231 @default.
- W3106153623 hasConcept C154945302 @default.
- W3106153623 hasConcept C166957645 @default.
- W3106153623 hasConcept C174183944 @default.
- W3106153623 hasConcept C199360897 @default.