Matches in SemOpenAlex for { <https://semopenalex.org/work/W3106165797> ?p ?o ?g. }
- W3106165797 endingPage "1804" @default.
- W3106165797 startingPage "1793" @default.
- W3106165797 abstract "Predicting novel uses for approved drugs helps in reducing the costs of drug development and facilitates the development process. Most of previous methods focused on the multi-source data related to drugs and diseases to predict the candidate associations between drugs and diseases. There are multiple kinds of similarities between drugs, and these similarities reflect how similar two drugs are from the different views, whereas most of the previous methods failed to deeply integrate these similarities. In addition, the topology structures of the multiple drug-disease heterogeneous networks constructed by using the different kinds of drug similarities are not fully exploited. We therefore propose GFPred, a method based on a graph convolutional autoencoder and a fully-connected autoencoder with an attention mechanism, to predict drug-related diseases. GFPred integrates drug-disease associations, disease similarities, three kinds of drug similarities and attributes of the drug nodes. Three drug-disease heterogeneous networks are constructed based on the different kinds of drug similarities. We construct a graph convolutional autoencoder module, and integrate the attributes of the drug and disease nodes in each network to learn the topology representations of each drug node and disease node. As the different kinds of drug attributes contribute differently to the prediction of drug-disease associations, we construct an attribute-level attention mechanism. A fully-connected autoencoder module is established to learn the attribute representations of the drug and disease nodes. Finally, the original features of the drug-disease node pairs are also important auxiliary information for their association prediction. A combined strategy based on a convolutional neural network is proposed to fully integrate the topology representations, the attribute representations, and the original features of the drug-disease pairs. The ablation studies showed the contributions of data related to three types of drug attributes. Comparison with other methods confirmed that GFPred achieved better performance than several state-of-the-art prediction methods. In particular, case studies confirmed that GFPred is able to retrieve more actual drug-disease associations in the top k part of the prediction results. It is helpful for biologists to discover real associations by wet-lab experiments." @default.
- W3106165797 created "2020-11-23" @default.
- W3106165797 creator A5004963500 @default.
- W3106165797 creator A5009082704 @default.
- W3106165797 creator A5031451463 @default.
- W3106165797 creator A5038644272 @default.
- W3106165797 creator A5057845577 @default.
- W3106165797 date "2021-05-01" @default.
- W3106165797 modified "2023-10-17" @default.
- W3106165797 title "Graph Convolutional Autoencoder and Fully-Connected Autoencoder with Attention Mechanism Based Method for Predicting Drug-Disease Associations" @default.
- W3106165797 cites W1544435011 @default.
- W3106165797 cites W1966716734 @default.
- W3106165797 cites W1998898494 @default.
- W3106165797 cites W2019707847 @default.
- W3106165797 cites W2020274161 @default.
- W3106165797 cites W2021936091 @default.
- W3106165797 cites W2048685154 @default.
- W3106165797 cites W2052170486 @default.
- W3106165797 cites W2079745490 @default.
- W3106165797 cites W2113072832 @default.
- W3106165797 cites W2141222510 @default.
- W3106165797 cites W2151357092 @default.
- W3106165797 cites W2164461702 @default.
- W3106165797 cites W2165276227 @default.
- W3106165797 cites W2167212630 @default.
- W3106165797 cites W2177317049 @default.
- W3106165797 cites W2259538443 @default.
- W3106165797 cites W2333144702 @default.
- W3106165797 cites W2346950316 @default.
- W3106165797 cites W2473876819 @default.
- W3106165797 cites W2553570933 @default.
- W3106165797 cites W2562110925 @default.
- W3106165797 cites W2579434750 @default.
- W3106165797 cites W2743104969 @default.
- W3106165797 cites W2767891136 @default.
- W3106165797 cites W2768094704 @default.
- W3106165797 cites W2768924715 @default.
- W3106165797 cites W2775185492 @default.
- W3106165797 cites W2790385355 @default.
- W3106165797 cites W2807209585 @default.
- W3106165797 cites W2808904174 @default.
- W3106165797 cites W2809156537 @default.
- W3106165797 cites W2883608678 @default.
- W3106165797 cites W2896002881 @default.
- W3106165797 cites W2909449701 @default.
- W3106165797 cites W2914663096 @default.
- W3106165797 cites W2916047525 @default.
- W3106165797 cites W2922405516 @default.
- W3106165797 cites W2961050676 @default.
- W3106165797 cites W2970428221 @default.
- W3106165797 cites W2982193101 @default.
- W3106165797 cites W2990691215 @default.
- W3106165797 cites W2990717563 @default.
- W3106165797 cites W3000600836 @default.
- W3106165797 cites W3022121690 @default.
- W3106165797 cites W4242853598 @default.
- W3106165797 doi "https://doi.org/10.1109/jbhi.2020.3039502" @default.
- W3106165797 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33216722" @default.
- W3106165797 hasPublicationYear "2021" @default.
- W3106165797 type Work @default.
- W3106165797 sameAs 3106165797 @default.
- W3106165797 citedByCount "27" @default.
- W3106165797 countsByYear W31061657972021 @default.
- W3106165797 countsByYear W31061657972022 @default.
- W3106165797 countsByYear W31061657972023 @default.
- W3106165797 crossrefType "journal-article" @default.
- W3106165797 hasAuthorship W3106165797A5004963500 @default.
- W3106165797 hasAuthorship W3106165797A5009082704 @default.
- W3106165797 hasAuthorship W3106165797A5031451463 @default.
- W3106165797 hasAuthorship W3106165797A5038644272 @default.
- W3106165797 hasAuthorship W3106165797A5057845577 @default.
- W3106165797 hasConcept C101738243 @default.
- W3106165797 hasConcept C108583219 @default.
- W3106165797 hasConcept C111472728 @default.
- W3106165797 hasConcept C119857082 @default.
- W3106165797 hasConcept C124101348 @default.
- W3106165797 hasConcept C127413603 @default.
- W3106165797 hasConcept C132525143 @default.
- W3106165797 hasConcept C138885662 @default.
- W3106165797 hasConcept C142724271 @default.
- W3106165797 hasConcept C154945302 @default.
- W3106165797 hasConcept C2779134260 @default.
- W3106165797 hasConcept C2780035454 @default.
- W3106165797 hasConcept C41008148 @default.
- W3106165797 hasConcept C62611344 @default.
- W3106165797 hasConcept C66938386 @default.
- W3106165797 hasConcept C71924100 @default.
- W3106165797 hasConcept C80444323 @default.
- W3106165797 hasConcept C89611455 @default.
- W3106165797 hasConcept C98274493 @default.
- W3106165797 hasConceptScore W3106165797C101738243 @default.
- W3106165797 hasConceptScore W3106165797C108583219 @default.
- W3106165797 hasConceptScore W3106165797C111472728 @default.
- W3106165797 hasConceptScore W3106165797C119857082 @default.
- W3106165797 hasConceptScore W3106165797C124101348 @default.
- W3106165797 hasConceptScore W3106165797C127413603 @default.
- W3106165797 hasConceptScore W3106165797C132525143 @default.
- W3106165797 hasConceptScore W3106165797C138885662 @default.