Matches in SemOpenAlex for { <https://semopenalex.org/work/W3106276089> ?p ?o ?g. }
- W3106276089 endingPage "512" @default.
- W3106276089 startingPage "512" @default.
- W3106276089 abstract "Networks are used to model real-world phenomena in various domains, including systems biology. Since proteins carry out biological processes by interacting with other proteins, it is expected that cellular functions are reflected in the structure of protein-protein interaction (PPI) networks. Similarly, the topology of residue interaction graphs (RIGs) that model proteins' 3-dimensional structure might provide insights into protein folding, stability, and function. An important step towards understanding these networks is finding an adequate model, since models can be exploited algorithmically as well as used for predicting missing data. Evaluating the fit of a model to the data is a formidable challenge, since comparisons are computationally infeasible and thus have to rely on heuristics, or network properties. We show that it is difficult to assess the reliability of the fit of a model using any property alone. Thus, we present an integrative approach that feeds a variety of properties into five machine learning classifiers to predict the best-fitting model for PPI networks and RIGs. We confirm that geometric random graphs (GEO) are the best-fitting model for RIGs. Since GEO networks model spatial relationships between objects and are thus expected to replicate well the underlying structure of spatially packed residues in a protein, the good fit of GEO to RIGs validates our approach. Additionally, we apply our approach to PPI networks and confirm that the structure of merged data sets containing both binary and co-complex data that are of high coverage and confidence is also consistent with the structure of GEO, while the structure of less complete and lower confidence data is not. Since PPI data are noisy, we test the robustness of the five classifiers to noise and show that their robustness levels differ. We demonstrate that none of the classifiers predicts noisy scale-free (SF) networks as GEO, whereas noisy GEOs can be classified as SF. Thus, it is unlikely that our approach would predict a real-world as GEO if it had a noisy SF structure. However, it could classify the data as SF if it had a noisy GEO structure. Therefore, the structure of the PPI networks is the most consistent with the structure of a noisy GEO." @default.
- W3106276089 created "2020-11-23" @default.
- W3106276089 creator A5004210800 @default.
- W3106276089 creator A5042457126 @default.
- W3106276089 creator A5069984203 @default.
- W3106276089 date "2010-03-25" @default.
- W3106276089 modified "2023-09-28" @default.
- W3106276089 title "An integrative approach to modeling biological networks." @default.
- W3106276089 cites W1506845741 @default.
- W3106276089 cites W1570448133 @default.
- W3106276089 cites W1591139320 @default.
- W3106276089 cites W1594031697 @default.
- W3106276089 cites W1595740553 @default.
- W3106276089 cites W1970360171 @default.
- W3106276089 cites W1993591356 @default.
- W3106276089 cites W2008620264 @default.
- W3106276089 cites W2019133685 @default.
- W3106276089 cites W2036265926 @default.
- W3106276089 cites W2037433020 @default.
- W3106276089 cites W2049966951 @default.
- W3106276089 cites W2060246191 @default.
- W3106276089 cites W2065304353 @default.
- W3106276089 cites W2067305633 @default.
- W3106276089 cites W2077119611 @default.
- W3106276089 cites W2103547092 @default.
- W3106276089 cites W2104315543 @default.
- W3106276089 cites W2104812688 @default.
- W3106276089 cites W2109248504 @default.
- W3106276089 cites W2110482684 @default.
- W3106276089 cites W2110699703 @default.
- W3106276089 cites W2113654464 @default.
- W3106276089 cites W2116447934 @default.
- W3106276089 cites W2122076882 @default.
- W3106276089 cites W2123643026 @default.
- W3106276089 cites W2130687290 @default.
- W3106276089 cites W2130790725 @default.
- W3106276089 cites W2131984349 @default.
- W3106276089 cites W2148762636 @default.
- W3106276089 cites W2155653793 @default.
- W3106276089 cites W2156070536 @default.
- W3106276089 cites W2156151509 @default.
- W3106276089 cites W2156909104 @default.
- W3106276089 cites W2160144441 @default.
- W3106276089 cites W2163480486 @default.
- W3106276089 cites W2166558964 @default.
- W3106276089 cites W2168708357 @default.
- W3106276089 cites W2917431650 @default.
- W3106276089 cites W3085162807 @default.
- W3106276089 cites W3105615985 @default.
- W3106276089 cites W3146334774 @default.
- W3106276089 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20375453" @default.
- W3106276089 hasPublicationYear "2010" @default.
- W3106276089 type Work @default.
- W3106276089 sameAs 3106276089 @default.
- W3106276089 citedByCount "6" @default.
- W3106276089 countsByYear W31062760892013 @default.
- W3106276089 countsByYear W31062760892016 @default.
- W3106276089 countsByYear W31062760892017 @default.
- W3106276089 countsByYear W31062760892019 @default.
- W3106276089 countsByYear W31062760892022 @default.
- W3106276089 crossrefType "journal-article" @default.
- W3106276089 hasAuthorship W3106276089A5004210800 @default.
- W3106276089 hasAuthorship W3106276089A5042457126 @default.
- W3106276089 hasAuthorship W3106276089A5069984203 @default.
- W3106276089 hasConcept C105795698 @default.
- W3106276089 hasConcept C111472728 @default.
- W3106276089 hasConcept C111919701 @default.
- W3106276089 hasConcept C114614502 @default.
- W3106276089 hasConcept C119857082 @default.
- W3106276089 hasConcept C124101348 @default.
- W3106276089 hasConcept C127705205 @default.
- W3106276089 hasConcept C138885662 @default.
- W3106276089 hasConcept C14036430 @default.
- W3106276089 hasConcept C154945302 @default.
- W3106276089 hasConcept C189950617 @default.
- W3106276089 hasConcept C2781162219 @default.
- W3106276089 hasConcept C28225019 @default.
- W3106276089 hasConcept C33923547 @default.
- W3106276089 hasConcept C41008148 @default.
- W3106276089 hasConcept C78458016 @default.
- W3106276089 hasConcept C80444323 @default.
- W3106276089 hasConcept C86803240 @default.
- W3106276089 hasConceptScore W3106276089C105795698 @default.
- W3106276089 hasConceptScore W3106276089C111472728 @default.
- W3106276089 hasConceptScore W3106276089C111919701 @default.
- W3106276089 hasConceptScore W3106276089C114614502 @default.
- W3106276089 hasConceptScore W3106276089C119857082 @default.
- W3106276089 hasConceptScore W3106276089C124101348 @default.
- W3106276089 hasConceptScore W3106276089C127705205 @default.
- W3106276089 hasConceptScore W3106276089C138885662 @default.
- W3106276089 hasConceptScore W3106276089C14036430 @default.
- W3106276089 hasConceptScore W3106276089C154945302 @default.
- W3106276089 hasConceptScore W3106276089C189950617 @default.
- W3106276089 hasConceptScore W3106276089C2781162219 @default.
- W3106276089 hasConceptScore W3106276089C28225019 @default.
- W3106276089 hasConceptScore W3106276089C33923547 @default.
- W3106276089 hasConceptScore W3106276089C41008148 @default.
- W3106276089 hasConceptScore W3106276089C78458016 @default.