Matches in SemOpenAlex for { <https://semopenalex.org/work/W3106306218> ?p ?o ?g. }
- W3106306218 abstract "Visual analysis of complex fish habitats is an important step towards sustainable fisheries for human consumption and environmental protection. Deep Learning methods have shown great promise for scene analysis when trained on large-scale datasets. However, current datasets for fish analysis tend to focus on the classification task within constrained, plain environments which do not capture the complexity of underwater fish habitats. To address this limitation, we present DeepFish as a benchmark suite with a large-scale dataset to train and test methods for several computer vision tasks. The dataset consists of approximately 40 thousand images collected underwater from 20 green{habitats in the} marine-environments of tropical Australia. The dataset originally contained only classification labels. Thus, we collected point-level and segmentation labels to have a more comprehensive fish analysis benchmark. These labels enable models to learn to automatically monitor fish count, identify their locations, and estimate their sizes. Our experiments provide an in-depth analysis of the dataset characteristics, and the performance evaluation of several state-of-the-art approaches based on our benchmark. Although models pre-trained on ImageNet have successfully performed on this benchmark, there is still room for improvement. Therefore, this benchmark serves as a testbed to motivate further development in this challenging domain of underwater computer vision. Code is available at: https://github.com/alzayats/DeepFish" @default.
- W3106306218 created "2020-11-23" @default.
- W3106306218 creator A5004903288 @default.
- W3106306218 creator A5005715528 @default.
- W3106306218 creator A5028905152 @default.
- W3106306218 creator A5069172832 @default.
- W3106306218 creator A5076049207 @default.
- W3106306218 creator A5083542118 @default.
- W3106306218 date "2020-09-04" @default.
- W3106306218 modified "2023-10-16" @default.
- W3106306218 title "A realistic fish-habitat dataset to evaluate algorithms for underwater visual analysis" @default.
- W3106306218 cites W1203557841 @default.
- W3106306218 cites W1861492603 @default.
- W3106306218 cites W1903029394 @default.
- W3106306218 cites W1964650584 @default.
- W3106306218 cites W2013853477 @default.
- W3106306218 cites W2019989105 @default.
- W3106306218 cites W2029992819 @default.
- W3106306218 cites W2036955302 @default.
- W3106306218 cites W2037227137 @default.
- W3106306218 cites W2037743347 @default.
- W3106306218 cites W2108598243 @default.
- W3106306218 cites W2110764733 @default.
- W3106306218 cites W2194775991 @default.
- W3106306218 cites W2202235164 @default.
- W3106306218 cites W2340897893 @default.
- W3106306218 cites W2414953505 @default.
- W3106306218 cites W2736468160 @default.
- W3106306218 cites W2883929025 @default.
- W3106306218 cites W2885575739 @default.
- W3106306218 cites W2915312087 @default.
- W3106306218 cites W2919094033 @default.
- W3106306218 cites W2963351448 @default.
- W3106306218 cites W2981482662 @default.
- W3106306218 cites W2997701571 @default.
- W3106306218 cites W3090584996 @default.
- W3106306218 cites W3101934592 @default.
- W3106306218 cites W3110214837 @default.
- W3106306218 cites W3119329762 @default.
- W3106306218 doi "https://doi.org/10.1038/s41598-020-71639-x" @default.
- W3106306218 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7473859" @default.
- W3106306218 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32887922" @default.
- W3106306218 hasPublicationYear "2020" @default.
- W3106306218 type Work @default.
- W3106306218 sameAs 3106306218 @default.
- W3106306218 citedByCount "49" @default.
- W3106306218 countsByYear W31063062182020 @default.
- W3106306218 countsByYear W31063062182021 @default.
- W3106306218 countsByYear W31063062182022 @default.
- W3106306218 countsByYear W31063062182023 @default.
- W3106306218 crossrefType "journal-article" @default.
- W3106306218 hasAuthorship W3106306218A5004903288 @default.
- W3106306218 hasAuthorship W3106306218A5005715528 @default.
- W3106306218 hasAuthorship W3106306218A5028905152 @default.
- W3106306218 hasAuthorship W3106306218A5069172832 @default.
- W3106306218 hasAuthorship W3106306218A5076049207 @default.
- W3106306218 hasAuthorship W3106306218A5083542118 @default.
- W3106306218 hasBestOaLocation W31063062181 @default.
- W3106306218 hasConcept C119857082 @default.
- W3106306218 hasConcept C124101348 @default.
- W3106306218 hasConcept C154945302 @default.
- W3106306218 hasConcept C162324750 @default.
- W3106306218 hasConcept C166957645 @default.
- W3106306218 hasConcept C177264268 @default.
- W3106306218 hasConcept C185798385 @default.
- W3106306218 hasConcept C187736073 @default.
- W3106306218 hasConcept C199360897 @default.
- W3106306218 hasConcept C205649164 @default.
- W3106306218 hasConcept C2776760102 @default.
- W3106306218 hasConcept C2778755073 @default.
- W3106306218 hasConcept C2780451532 @default.
- W3106306218 hasConcept C31258907 @default.
- W3106306218 hasConcept C31395832 @default.
- W3106306218 hasConcept C41008148 @default.
- W3106306218 hasConcept C58640448 @default.
- W3106306218 hasConcept C79581498 @default.
- W3106306218 hasConcept C81363708 @default.
- W3106306218 hasConcept C89600930 @default.
- W3106306218 hasConcept C98083399 @default.
- W3106306218 hasConceptScore W3106306218C119857082 @default.
- W3106306218 hasConceptScore W3106306218C124101348 @default.
- W3106306218 hasConceptScore W3106306218C154945302 @default.
- W3106306218 hasConceptScore W3106306218C162324750 @default.
- W3106306218 hasConceptScore W3106306218C166957645 @default.
- W3106306218 hasConceptScore W3106306218C177264268 @default.
- W3106306218 hasConceptScore W3106306218C185798385 @default.
- W3106306218 hasConceptScore W3106306218C187736073 @default.
- W3106306218 hasConceptScore W3106306218C199360897 @default.
- W3106306218 hasConceptScore W3106306218C205649164 @default.
- W3106306218 hasConceptScore W3106306218C2776760102 @default.
- W3106306218 hasConceptScore W3106306218C2778755073 @default.
- W3106306218 hasConceptScore W3106306218C2780451532 @default.
- W3106306218 hasConceptScore W3106306218C31258907 @default.
- W3106306218 hasConceptScore W3106306218C31395832 @default.
- W3106306218 hasConceptScore W3106306218C41008148 @default.
- W3106306218 hasConceptScore W3106306218C58640448 @default.
- W3106306218 hasConceptScore W3106306218C79581498 @default.
- W3106306218 hasConceptScore W3106306218C81363708 @default.
- W3106306218 hasConceptScore W3106306218C89600930 @default.
- W3106306218 hasConceptScore W3106306218C98083399 @default.