Matches in SemOpenAlex for { <https://semopenalex.org/work/W3106345291> ?p ?o ?g. }
- W3106345291 endingPage "504" @default.
- W3106345291 startingPage "269" @default.
- W3106345291 abstract "We introduce a new notion of “regularity structure” that provides an algebraic framework allowing to describe functions and/or distributions via a kind of “jet” or local Taylor expansion around each point. The main novel idea is to replace the classical polynomial model which is suitable for describing smooth functions by arbitrary models that are purpose-built for the problem at hand. In particular, this allows to describe the local behaviour not only of functions but also of large classes of distributions. We then build a calculus allowing to perform the various operations (multiplication, composition with smooth functions, integration against singular kernels) necessary to formulate fixed point equations for a very large class of semilinear PDEs driven by some very singular (typically random) input. This allows, for the first time, to give a mathematically rigorous meaning to many interesting stochastic PDEs arising in physics. The theory comes with convergence results that allow to interpret the solutions obtained in this way as limits of classical solutions to regularised problems, possibly modified by the addition of diverging counterterms. These counterterms arise naturally through the action of a “renormalisation group” which is defined canonically in terms of the regularity structure associated to the given class of PDEs. Our theory also allows to easily recover many existing results on singular stochastic PDEs (KPZ equation, stochastic quantisation equations, Burgers-type equations) and to understand them as particular instances of a unified framework. One surprising insight is that in all of these instances local solutions are actually “smooth” in the sense that they can be approximated locally to arbitrarily high degree as linear combinations of a fixed family of random functions/distributions that play the role of “polynomials” in the theory. As an example of a novel application, we solve the long-standing problem of building a natural Markov process that is symmetric with respect to the (finite volume) measure describing the $$Phi ^4_3$$ Euclidean quantum field theory. It is natural to conjecture that the Markov process built in this way describes the Glauber dynamic of $$3$$ -dimensional ferromagnets near their critical temperature." @default.
- W3106345291 created "2020-11-23" @default.
- W3106345291 creator A5016315238 @default.
- W3106345291 date "2014-03-14" @default.
- W3106345291 modified "2023-10-17" @default.
- W3106345291 title "A theory of regularity structures" @default.
- W3106345291 cites W100459338 @default.
- W3106345291 cites W1554438420 @default.
- W3106345291 cites W166242285 @default.
- W3106345291 cites W1889950661 @default.
- W3106345291 cites W1968339027 @default.
- W3106345291 cites W1973898185 @default.
- W3106345291 cites W1974151608 @default.
- W3106345291 cites W1975102272 @default.
- W3106345291 cites W1975455351 @default.
- W3106345291 cites W1977726118 @default.
- W3106345291 cites W1978353195 @default.
- W3106345291 cites W1978560748 @default.
- W3106345291 cites W1981733036 @default.
- W3106345291 cites W1983373140 @default.
- W3106345291 cites W1984714663 @default.
- W3106345291 cites W1985337537 @default.
- W3106345291 cites W1990168164 @default.
- W3106345291 cites W2000492315 @default.
- W3106345291 cites W2002502603 @default.
- W3106345291 cites W2004095444 @default.
- W3106345291 cites W2005774001 @default.
- W3106345291 cites W2009858090 @default.
- W3106345291 cites W2014084891 @default.
- W3106345291 cites W2016319756 @default.
- W3106345291 cites W2022448788 @default.
- W3106345291 cites W2026439664 @default.
- W3106345291 cites W2026981791 @default.
- W3106345291 cites W2029173927 @default.
- W3106345291 cites W2032229183 @default.
- W3106345291 cites W2038273787 @default.
- W3106345291 cites W2043702877 @default.
- W3106345291 cites W2045384647 @default.
- W3106345291 cites W2047996184 @default.
- W3106345291 cites W2048920969 @default.
- W3106345291 cites W2055496831 @default.
- W3106345291 cites W2057345831 @default.
- W3106345291 cites W2059877345 @default.
- W3106345291 cites W2065773498 @default.
- W3106345291 cites W2066086134 @default.
- W3106345291 cites W2073004871 @default.
- W3106345291 cites W2074366794 @default.
- W3106345291 cites W2080164594 @default.
- W3106345291 cites W2085510216 @default.
- W3106345291 cites W2087496472 @default.
- W3106345291 cites W2097700002 @default.
- W3106345291 cites W2098914003 @default.
- W3106345291 cites W2125624906 @default.
- W3106345291 cites W2131099969 @default.
- W3106345291 cites W2131952261 @default.
- W3106345291 cites W2153926229 @default.
- W3106345291 cites W2162524026 @default.
- W3106345291 cites W2321957512 @default.
- W3106345291 cites W2326823265 @default.
- W3106345291 cites W2327680971 @default.
- W3106345291 cites W2330971297 @default.
- W3106345291 cites W2333046540 @default.
- W3106345291 cites W2337223819 @default.
- W3106345291 cites W24104254 @default.
- W3106345291 cites W2565432921 @default.
- W3106345291 cites W2596824449 @default.
- W3106345291 cites W2913627492 @default.
- W3106345291 cites W2942798256 @default.
- W3106345291 cites W2962942991 @default.
- W3106345291 cites W2963091097 @default.
- W3106345291 cites W2963270985 @default.
- W3106345291 cites W3100497783 @default.
- W3106345291 cites W3100690969 @default.
- W3106345291 cites W3103605883 @default.
- W3106345291 cites W3105897063 @default.
- W3106345291 cites W4229765068 @default.
- W3106345291 cites W4230211289 @default.
- W3106345291 cites W4239802052 @default.
- W3106345291 cites W4241771523 @default.
- W3106345291 cites W4293182332 @default.
- W3106345291 cites W617501864 @default.
- W3106345291 doi "https://doi.org/10.1007/s00222-014-0505-4" @default.
- W3106345291 hasPublicationYear "2014" @default.
- W3106345291 type Work @default.
- W3106345291 sameAs 3106345291 @default.
- W3106345291 citedByCount "704" @default.
- W3106345291 countsByYear W31063452912012 @default.
- W3106345291 countsByYear W31063452912013 @default.
- W3106345291 countsByYear W31063452912014 @default.
- W3106345291 countsByYear W31063452912015 @default.
- W3106345291 countsByYear W31063452912016 @default.
- W3106345291 countsByYear W31063452912017 @default.
- W3106345291 countsByYear W31063452912018 @default.
- W3106345291 countsByYear W31063452912019 @default.
- W3106345291 countsByYear W31063452912020 @default.
- W3106345291 countsByYear W31063452912021 @default.
- W3106345291 countsByYear W31063452912022 @default.
- W3106345291 countsByYear W31063452912023 @default.