Matches in SemOpenAlex for { <https://semopenalex.org/work/W3106363514> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3106363514 endingPage "239" @default.
- W3106363514 startingPage "225" @default.
- W3106363514 abstract "Missing data is one of the most common preprocessing problems. In this paper, we experimentally research the use of generative and non-generative models for feature reconstruction. Variational Autoencoder with Arbitrary Conditioning (VAEAC) and Generative Adversarial Imputation Network (GAIN) were researched as representatives of generative models, while the denoising autoencoder (DAE) represented non-generative models. Performance of the models is compared to traditional methods k-nearest neighbors (k-NN) and Multiple Imputation by Chained Equations (MICE). Moreover, we introduce WGAIN as the Wasserstein modification of GAIN, which turns out to be the best imputation model when the degree of missingness is less than or equal to $$30%$$ . Experiments were performed on real-world and artificial datasets with continuous features where different percentages of features, varying from $$10%$$ to $$50%$$ , were missing. Evaluation of algorithms was done by measuring the accuracy of the classification model previously trained on the uncorrupted dataset. The results show that GAIN and especially WGAIN are the best imputers regardless of the conditions. In general, they outperform or are comparative to MICE, k-NN, DAE, and VAEAC." @default.
- W3106363514 created "2020-11-23" @default.
- W3106363514 creator A5014905010 @default.
- W3106363514 creator A5059776265 @default.
- W3106363514 creator A5061117930 @default.
- W3106363514 creator A5067356570 @default.
- W3106363514 date "2020-01-01" @default.
- W3106363514 modified "2023-09-26" @default.
- W3106363514 title "Missing Features Reconstruction Using a Wasserstein Generative Adversarial Imputation Network" @default.
- W3106363514 cites W1919216911 @default.
- W3106363514 cites W1967697497 @default.
- W3106363514 cites W2016944307 @default.
- W3106363514 cites W2025768430 @default.
- W3106363514 cites W2085097378 @default.
- W3106363514 cites W2159798994 @default.
- W3106363514 cites W2529827714 @default.
- W3106363514 cites W2550179689 @default.
- W3106363514 cites W2749908420 @default.
- W3106363514 cites W2788592841 @default.
- W3106363514 cites W2792682332 @default.
- W3106363514 cites W2891381594 @default.
- W3106363514 cites W2894914645 @default.
- W3106363514 cites W2897574832 @default.
- W3106363514 cites W2962932373 @default.
- W3106363514 cites W2963420272 @default.
- W3106363514 cites W3102476541 @default.
- W3106363514 cites W3106244982 @default.
- W3106363514 cites W4241727697 @default.
- W3106363514 cites W4300187280 @default.
- W3106363514 doi "https://doi.org/10.1007/978-3-030-50423-6_17" @default.
- W3106363514 hasPublicationYear "2020" @default.
- W3106363514 type Work @default.
- W3106363514 sameAs 3106363514 @default.
- W3106363514 citedByCount "6" @default.
- W3106363514 countsByYear W31063635142021 @default.
- W3106363514 countsByYear W31063635142022 @default.
- W3106363514 countsByYear W31063635142023 @default.
- W3106363514 crossrefType "book-chapter" @default.
- W3106363514 hasAuthorship W3106363514A5014905010 @default.
- W3106363514 hasAuthorship W3106363514A5059776265 @default.
- W3106363514 hasAuthorship W3106363514A5061117930 @default.
- W3106363514 hasAuthorship W3106363514A5067356570 @default.
- W3106363514 hasBestOaLocation W31063635141 @default.
- W3106363514 hasConcept C101738243 @default.
- W3106363514 hasConcept C108583219 @default.
- W3106363514 hasConcept C119857082 @default.
- W3106363514 hasConcept C153180895 @default.
- W3106363514 hasConcept C154945302 @default.
- W3106363514 hasConcept C167966045 @default.
- W3106363514 hasConcept C2988773926 @default.
- W3106363514 hasConcept C34736171 @default.
- W3106363514 hasConcept C39890363 @default.
- W3106363514 hasConcept C41008148 @default.
- W3106363514 hasConcept C50644808 @default.
- W3106363514 hasConcept C58041806 @default.
- W3106363514 hasConcept C9357733 @default.
- W3106363514 hasConceptScore W3106363514C101738243 @default.
- W3106363514 hasConceptScore W3106363514C108583219 @default.
- W3106363514 hasConceptScore W3106363514C119857082 @default.
- W3106363514 hasConceptScore W3106363514C153180895 @default.
- W3106363514 hasConceptScore W3106363514C154945302 @default.
- W3106363514 hasConceptScore W3106363514C167966045 @default.
- W3106363514 hasConceptScore W3106363514C2988773926 @default.
- W3106363514 hasConceptScore W3106363514C34736171 @default.
- W3106363514 hasConceptScore W3106363514C39890363 @default.
- W3106363514 hasConceptScore W3106363514C41008148 @default.
- W3106363514 hasConceptScore W3106363514C50644808 @default.
- W3106363514 hasConceptScore W3106363514C58041806 @default.
- W3106363514 hasConceptScore W3106363514C9357733 @default.
- W3106363514 hasLocation W31063635141 @default.
- W3106363514 hasLocation W31063635142 @default.
- W3106363514 hasOpenAccess W3106363514 @default.
- W3106363514 hasPrimaryLocation W31063635141 @default.
- W3106363514 hasRelatedWork W2934600230 @default.
- W3106363514 hasRelatedWork W3043714757 @default.
- W3106363514 hasRelatedWork W3106363514 @default.
- W3106363514 hasRelatedWork W3176020369 @default.
- W3106363514 hasRelatedWork W3201693442 @default.
- W3106363514 hasRelatedWork W3211323476 @default.
- W3106363514 hasRelatedWork W3213684657 @default.
- W3106363514 hasRelatedWork W4287109554 @default.
- W3106363514 hasRelatedWork W4288558759 @default.
- W3106363514 hasRelatedWork W4286892964 @default.
- W3106363514 isParatext "false" @default.
- W3106363514 isRetracted "false" @default.
- W3106363514 magId "3106363514" @default.
- W3106363514 workType "book-chapter" @default.