Matches in SemOpenAlex for { <https://semopenalex.org/work/W3106366294> ?p ?o ?g. }
- W3106366294 abstract "Abstract Unconventional tight reservoirs currently make up more than 60% of domestic oil and gas production in the United States. However, developing unconventional formations requires intensive drilling and completion campaigns to maintain steady production of a field. Therefore, the prediction of estimated ultimate recovery, which measures the producible reserve from a well, is demanding, particularly as operators becomes more rational under the current volatile market conditions. Despite unconventional reservoirs being considered a resource play with low geological risks, their economic appraisal is challenged by unknown stimulation outcomes and intricate producing mechanisms. Therefore, this work aimed to leverage machine-learning techniques with big data to analyze the multivariant relationship of geological and engineering parameters with unconventional reservoir production and to improve the prediction of estimated ultimate recovery in unconventional formations. In this case study, a multiscale machine-learning workflow was deliberated and applied to a big data set from the Eagle Ford shale. First, quality control and feature selection were performed on a data set consisting of 4,067 wells with 30+ geophysical, petrophysical, drilling and completion, and production features. Then, a regional inferencing model, based on a K-nearest neighbor with bagging algorithm, was trained to obtain the spatial trend of estimated ultimate recovery across the Eagle Ford formation. The last part of the analysis was to build a local-scale prediction model. With the study area confined to East Texas, a random forest regression was performed to rigorously predict oil and gas estimated ultimate recoveries. The selected training features were finalized based on the results of a higher-dimension regression, as well as domain knowledge. Overall, the data-driven model trained with physically controlled data captured the production behavior of the Eagle Ford shale. The application of the proposed workflow on the Eagle Ford shale demonstrates a progressive building of the machine-learning model. The quality control of data allows global inspection of the data set and, more importantly, confirms the statistical distribution of training data. This study emphasizes the philosophy of multiscale data analytics. The large-scale model portraying sweet spots using location variables grants direct guidance for acreage acquisition and development across the basin; the small-scale model trained with reduced dimensionality generates quantitative prediction of oil and gas estimated ultimate recoveries for an area of interest. Compared with our previous work using higher dimensionality and extensive spatial interest, this progressive learning maintains similar explained variance in out-bag model check, but grants 26% and 52% reductions in mean square error for predicting oil and gas estimated ultimate recoveries in the Eagle Ford formation. In the end, prediction validation is performed by revisiting the data set. Overall, the proposed workflow demonstrates successful application in the Eagle Ford formation such that it can be directly implemented for other unconventional resource plays." @default.
- W3106366294 created "2020-11-23" @default.
- W3106366294 creator A5044200725 @default.
- W3106366294 creator A5076233932 @default.
- W3106366294 creator A5084906179 @default.
- W3106366294 date "2020-10-19" @default.
- W3106366294 modified "2023-09-27" @default.
- W3106366294 title "Regional to Local Machine-Learning Analysis for Unconventional Formation Reserve Estimation: Eagle Ford Case Study" @default.
- W3106366294 cites W1970037416 @default.
- W3106366294 cites W1970328887 @default.
- W3106366294 cites W1983991449 @default.
- W3106366294 cites W1986433037 @default.
- W3106366294 cites W1998748246 @default.
- W3106366294 cites W2005416851 @default.
- W3106366294 cites W2032278856 @default.
- W3106366294 cites W2043974102 @default.
- W3106366294 cites W2048314917 @default.
- W3106366294 cites W2089311113 @default.
- W3106366294 cites W2109438671 @default.
- W3106366294 cites W2269722270 @default.
- W3106366294 cites W2273690011 @default.
- W3106366294 cites W2283733733 @default.
- W3106366294 cites W2406593126 @default.
- W3106366294 cites W2419284728 @default.
- W3106366294 cites W2552073453 @default.
- W3106366294 cites W2767850182 @default.
- W3106366294 cites W2783628432 @default.
- W3106366294 cites W2789488193 @default.
- W3106366294 cites W2793669142 @default.
- W3106366294 cites W2886102000 @default.
- W3106366294 cites W2890702865 @default.
- W3106366294 cites W2891673700 @default.
- W3106366294 cites W2897316636 @default.
- W3106366294 cites W2912285134 @default.
- W3106366294 cites W2914358101 @default.
- W3106366294 cites W2945472662 @default.
- W3106366294 cites W2947768295 @default.
- W3106366294 cites W2961342225 @default.
- W3106366294 cites W2963027556 @default.
- W3106366294 cites W2974128930 @default.
- W3106366294 cites W2974741774 @default.
- W3106366294 cites W2974893410 @default.
- W3106366294 cites W3000664444 @default.
- W3106366294 cites W3020758654 @default.
- W3106366294 cites W4211046825 @default.
- W3106366294 cites W4212883601 @default.
- W3106366294 doi "https://doi.org/10.2118/201351-ms" @default.
- W3106366294 hasPublicationYear "2020" @default.
- W3106366294 type Work @default.
- W3106366294 sameAs 3106366294 @default.
- W3106366294 citedByCount "5" @default.
- W3106366294 countsByYear W31063662942020 @default.
- W3106366294 countsByYear W31063662942021 @default.
- W3106366294 countsByYear W31063662942023 @default.
- W3106366294 crossrefType "proceedings-article" @default.
- W3106366294 hasAuthorship W3106366294A5044200725 @default.
- W3106366294 hasAuthorship W3106366294A5076233932 @default.
- W3106366294 hasAuthorship W3106366294A5084906179 @default.
- W3106366294 hasConcept C119857082 @default.
- W3106366294 hasConcept C124101348 @default.
- W3106366294 hasConcept C127313418 @default.
- W3106366294 hasConcept C127413603 @default.
- W3106366294 hasConcept C14641988 @default.
- W3106366294 hasConcept C151730666 @default.
- W3106366294 hasConcept C153127940 @default.
- W3106366294 hasConcept C154945302 @default.
- W3106366294 hasConcept C177212765 @default.
- W3106366294 hasConcept C187320778 @default.
- W3106366294 hasConcept C24345647 @default.
- W3106366294 hasConcept C25197100 @default.
- W3106366294 hasConcept C41008148 @default.
- W3106366294 hasConcept C46293882 @default.
- W3106366294 hasConcept C6648577 @default.
- W3106366294 hasConcept C75684735 @default.
- W3106366294 hasConcept C77088390 @default.
- W3106366294 hasConcept C78519656 @default.
- W3106366294 hasConcept C78762247 @default.
- W3106366294 hasConceptScore W3106366294C119857082 @default.
- W3106366294 hasConceptScore W3106366294C124101348 @default.
- W3106366294 hasConceptScore W3106366294C127313418 @default.
- W3106366294 hasConceptScore W3106366294C127413603 @default.
- W3106366294 hasConceptScore W3106366294C14641988 @default.
- W3106366294 hasConceptScore W3106366294C151730666 @default.
- W3106366294 hasConceptScore W3106366294C153127940 @default.
- W3106366294 hasConceptScore W3106366294C154945302 @default.
- W3106366294 hasConceptScore W3106366294C177212765 @default.
- W3106366294 hasConceptScore W3106366294C187320778 @default.
- W3106366294 hasConceptScore W3106366294C24345647 @default.
- W3106366294 hasConceptScore W3106366294C25197100 @default.
- W3106366294 hasConceptScore W3106366294C41008148 @default.
- W3106366294 hasConceptScore W3106366294C46293882 @default.
- W3106366294 hasConceptScore W3106366294C6648577 @default.
- W3106366294 hasConceptScore W3106366294C75684735 @default.
- W3106366294 hasConceptScore W3106366294C77088390 @default.
- W3106366294 hasConceptScore W3106366294C78519656 @default.
- W3106366294 hasConceptScore W3106366294C78762247 @default.
- W3106366294 hasLocation W31063662941 @default.
- W3106366294 hasOpenAccess W3106366294 @default.
- W3106366294 hasPrimaryLocation W31063662941 @default.
- W3106366294 hasRelatedWork W2064460224 @default.