Matches in SemOpenAlex for { <https://semopenalex.org/work/W3106471330> ?p ?o ?g. }
- W3106471330 endingPage "9320" @default.
- W3106471330 startingPage "9320" @default.
- W3106471330 abstract "The unprecedented urban growth of recent years requires improved urban planning and management to make urban spaces more inclusive, safe, resilient and sustainable. Additionally, humanity faces the COVID pandemic, which especially complicates the management of Smart Cities. A possible solution to address these two problems (environmental and health) in Smart Cities may be the use of Machine Learning techniques. One of the objectives of our work is to thoroughly analyze the link between the concepts of Smart Cities, Machine Learning techniques and their applicability. In this work, an exhaustive study of the relationship between Smart Cities and the applicability of Machine Learning (ML) techniques is carried out with the aim of optimizing sustainability. For this, the ML models, analyzed from the point of view of the models, techniques and applications, are studied. The areas and dimensions of sustainability addressed are analyzed, and the Sustainable Development Goals (SDGs) are discussed. The main objective is to propose a model (EARLY) that allows us to tackle these problems in the future. An inclusive perspective on applicability, sustainability scopes and dimensions, SDGs, tools, data types and Machine Learning techniques is provided. Finally, a case study applied to an Andalusian city is presented." @default.
- W3106471330 created "2020-11-23" @default.
- W3106471330 creator A5018150499 @default.
- W3106471330 creator A5031823743 @default.
- W3106471330 creator A5046065063 @default.
- W3106471330 date "2020-11-10" @default.
- W3106471330 modified "2023-10-12" @default.
- W3106471330 title "Machine Learning Technologies for Sustainability in Smart Cities in the Post-COVID Era" @default.
- W3106471330 cites W2058993674 @default.
- W3106471330 cites W2073968479 @default.
- W3106471330 cites W2115393328 @default.
- W3106471330 cites W2149711842 @default.
- W3106471330 cites W2150220236 @default.
- W3106471330 cites W2169619085 @default.
- W3106471330 cites W2526352861 @default.
- W3106471330 cites W2529742705 @default.
- W3106471330 cites W2595918220 @default.
- W3106471330 cites W2600942248 @default.
- W3106471330 cites W2728456897 @default.
- W3106471330 cites W2741941891 @default.
- W3106471330 cites W2743623239 @default.
- W3106471330 cites W2752961393 @default.
- W3106471330 cites W2787656392 @default.
- W3106471330 cites W2790486829 @default.
- W3106471330 cites W2790616027 @default.
- W3106471330 cites W2792091148 @default.
- W3106471330 cites W2807747595 @default.
- W3106471330 cites W2810260586 @default.
- W3106471330 cites W2811114487 @default.
- W3106471330 cites W2898535022 @default.
- W3106471330 cites W2899104435 @default.
- W3106471330 cites W2900981450 @default.
- W3106471330 cites W2902747478 @default.
- W3106471330 cites W2908746407 @default.
- W3106471330 cites W2911268945 @default.
- W3106471330 cites W2913791538 @default.
- W3106471330 cites W2913895065 @default.
- W3106471330 cites W2914151854 @default.
- W3106471330 cites W2914304120 @default.
- W3106471330 cites W2920439701 @default.
- W3106471330 cites W2924532711 @default.
- W3106471330 cites W2940410650 @default.
- W3106471330 cites W2943899063 @default.
- W3106471330 cites W2945033133 @default.
- W3106471330 cites W2945453951 @default.
- W3106471330 cites W2945515276 @default.
- W3106471330 cites W2946736456 @default.
- W3106471330 cites W2947863890 @default.
- W3106471330 cites W2948663803 @default.
- W3106471330 cites W2953107155 @default.
- W3106471330 cites W2953679651 @default.
- W3106471330 cites W2955092811 @default.
- W3106471330 cites W2956780471 @default.
- W3106471330 cites W2963576108 @default.
- W3106471330 cites W2967101780 @default.
- W3106471330 cites W2971211639 @default.
- W3106471330 cites W2977786909 @default.
- W3106471330 cites W2981586399 @default.
- W3106471330 cites W2996732749 @default.
- W3106471330 cites W3007556402 @default.
- W3106471330 cites W3011563767 @default.
- W3106471330 cites W3012446780 @default.
- W3106471330 cites W3013905067 @default.
- W3106471330 cites W3017416358 @default.
- W3106471330 cites W3019923827 @default.
- W3106471330 cites W3026146554 @default.
- W3106471330 cites W3028092746 @default.
- W3106471330 cites W3031631987 @default.
- W3106471330 cites W3033300489 @default.
- W3106471330 cites W3041632850 @default.
- W3106471330 cites W3091463598 @default.
- W3106471330 cites W3125505924 @default.
- W3106471330 cites W4211244701 @default.
- W3106471330 cites W1967876076 @default.
- W3106471330 doi "https://doi.org/10.3390/su12229320" @default.
- W3106471330 hasPublicationYear "2020" @default.
- W3106471330 type Work @default.
- W3106471330 sameAs 3106471330 @default.
- W3106471330 citedByCount "18" @default.
- W3106471330 countsByYear W31064713302021 @default.
- W3106471330 countsByYear W31064713302022 @default.
- W3106471330 countsByYear W31064713302023 @default.
- W3106471330 crossrefType "journal-article" @default.
- W3106471330 hasAuthorship W3106471330A5018150499 @default.
- W3106471330 hasAuthorship W3106471330A5031823743 @default.
- W3106471330 hasAuthorship W3106471330A5046065063 @default.
- W3106471330 hasBestOaLocation W31064713301 @default.
- W3106471330 hasConcept C112930515 @default.
- W3106471330 hasConcept C127413603 @default.
- W3106471330 hasConcept C142724271 @default.
- W3106471330 hasConcept C144133560 @default.
- W3106471330 hasConcept C147176958 @default.
- W3106471330 hasConcept C154945302 @default.
- W3106471330 hasConcept C17744445 @default.
- W3106471330 hasConcept C18762648 @default.
- W3106471330 hasConcept C18903297 @default.
- W3106471330 hasConcept C195094911 @default.
- W3106471330 hasConcept C199539241 @default.