Matches in SemOpenAlex for { <https://semopenalex.org/work/W3106528173> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3106528173 abstract "Background: Predictive modeling is a key component of solutions to many healthcare problems. Among all predictive modeling approaches, machine learning methods often achieve the highest prediction accuracy, but suffer from a long-standing open problem precluding their widespread use in healthcare. Most machine learning models give no explanation for their prediction results, whereas interpretability is essential for a predictive model to be adopted in typical healthcare settings. Methods: This paper presents the first complete method for automatically explaining results for any machine learning predictive model without degrading accuracy. We did a computer coding implementation of the method. Using the electronic medical record data set from the Practice Fusion diabetes classification competition containing patient records from all 50 states in the United States, we demonstrated the method on predicting type 2 diabetes diagnosis within the next year. Results: For the champion machine learning model of the competition, our method explained prediction results for 87.4% of patients who were correctly predicted by the model to have type 2 diabetes diagnosis within the next year. Conclusions: Our demonstration showed the feasibility of automatically explaining results for any machine learning predictive model without degrading accuracy." @default.
- W3106528173 created "2020-11-23" @default.
- W3106528173 creator A5080086968 @default.
- W3106528173 date "2016-03-08" @default.
- W3106528173 modified "2023-10-13" @default.
- W3106528173 title "Automatically explaining machine learning prediction results: a demonstration on type 2 diabetes risk prediction" @default.
- W3106528173 cites W107445507 @default.
- W3106528173 cites W1623342295 @default.
- W3106528173 cites W1829050540 @default.
- W3106528173 cites W1968452917 @default.
- W3106528173 cites W1982626572 @default.
- W3106528173 cites W1992034625 @default.
- W3106528173 cites W1998560003 @default.
- W3106528173 cites W2006393945 @default.
- W3106528173 cites W2026905436 @default.
- W3106528173 cites W2049846212 @default.
- W3106528173 cites W2061787053 @default.
- W3106528173 cites W2103556204 @default.
- W3106528173 cites W2106734747 @default.
- W3106528173 cites W2115569315 @default.
- W3106528173 cites W2118047689 @default.
- W3106528173 cites W2123744385 @default.
- W3106528173 cites W2138061404 @default.
- W3106528173 cites W2146536851 @default.
- W3106528173 cites W2158822657 @default.
- W3106528173 cites W2332951586 @default.
- W3106528173 cites W4206671592 @default.
- W3106528173 cites W4213286494 @default.
- W3106528173 cites W429766147 @default.
- W3106528173 doi "https://doi.org/10.1186/s13755-016-0015-4" @default.
- W3106528173 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26958341" @default.
- W3106528173 hasPublicationYear "2016" @default.
- W3106528173 type Work @default.
- W3106528173 sameAs 3106528173 @default.
- W3106528173 citedByCount "73" @default.
- W3106528173 countsByYear W31065281732016 @default.
- W3106528173 countsByYear W31065281732017 @default.
- W3106528173 countsByYear W31065281732018 @default.
- W3106528173 countsByYear W31065281732019 @default.
- W3106528173 countsByYear W31065281732020 @default.
- W3106528173 countsByYear W31065281732021 @default.
- W3106528173 countsByYear W31065281732022 @default.
- W3106528173 countsByYear W31065281732023 @default.
- W3106528173 crossrefType "journal-article" @default.
- W3106528173 hasAuthorship W3106528173A5080086968 @default.
- W3106528173 hasBestOaLocation W31065281731 @default.
- W3106528173 hasConcept C119857082 @default.
- W3106528173 hasConcept C154945302 @default.
- W3106528173 hasConcept C160735492 @default.
- W3106528173 hasConcept C162324750 @default.
- W3106528173 hasConcept C17744445 @default.
- W3106528173 hasConcept C199539241 @default.
- W3106528173 hasConcept C2780465443 @default.
- W3106528173 hasConcept C2781067378 @default.
- W3106528173 hasConcept C41008148 @default.
- W3106528173 hasConcept C45804977 @default.
- W3106528173 hasConcept C50522688 @default.
- W3106528173 hasConceptScore W3106528173C119857082 @default.
- W3106528173 hasConceptScore W3106528173C154945302 @default.
- W3106528173 hasConceptScore W3106528173C160735492 @default.
- W3106528173 hasConceptScore W3106528173C162324750 @default.
- W3106528173 hasConceptScore W3106528173C17744445 @default.
- W3106528173 hasConceptScore W3106528173C199539241 @default.
- W3106528173 hasConceptScore W3106528173C2780465443 @default.
- W3106528173 hasConceptScore W3106528173C2781067378 @default.
- W3106528173 hasConceptScore W3106528173C41008148 @default.
- W3106528173 hasConceptScore W3106528173C45804977 @default.
- W3106528173 hasConceptScore W3106528173C50522688 @default.
- W3106528173 hasIssue "1" @default.
- W3106528173 hasLocation W31065281731 @default.
- W3106528173 hasLocation W31065281732 @default.
- W3106528173 hasLocation W31065281733 @default.
- W3106528173 hasLocation W31065281734 @default.
- W3106528173 hasLocation W31065281735 @default.
- W3106528173 hasOpenAccess W3106528173 @default.
- W3106528173 hasPrimaryLocation W31065281731 @default.
- W3106528173 hasRelatedWork W3006943036 @default.
- W3106528173 hasRelatedWork W3088815947 @default.
- W3106528173 hasRelatedWork W3133294580 @default.
- W3106528173 hasRelatedWork W3150895494 @default.
- W3106528173 hasRelatedWork W3161507932 @default.
- W3106528173 hasRelatedWork W3166531723 @default.
- W3106528173 hasRelatedWork W4200511449 @default.
- W3106528173 hasRelatedWork W4206534706 @default.
- W3106528173 hasRelatedWork W4229079080 @default.
- W3106528173 hasRelatedWork W4299487748 @default.
- W3106528173 hasVolume "4" @default.
- W3106528173 isParatext "false" @default.
- W3106528173 isRetracted "false" @default.
- W3106528173 magId "3106528173" @default.
- W3106528173 workType "article" @default.