Matches in SemOpenAlex for { <https://semopenalex.org/work/W3106541595> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3106541595 endingPage "5" @default.
- W3106541595 startingPage "1" @default.
- W3106541595 abstract "Predicting gas-bearing zone of deep tight dolomite reservoirs from prestack seismic data is challenging and subject to great uncertainty. Machine learning especially for deep learning (DL) provides a new potential. One main limitation of the DL-based supervised methods is that they require large amounts of training data. However, well-log labels from the real deep reservoirs are very insufficient. To address this issue, we investigate a method based on convolutional neural networks (CNNs) considering transfer learning to predict gas distribution of deep tight dolomite reservoirs. The CNNs model we used contains three convolutional layers for automatic feature extraction from prestack data and one fully connected (FC) layer for gas-bearing probability prediction. A numerical model is designed based on petrophysical parameters extracted from the real target work area associated with deep tight dolomite reservoirs. The model is used to generate synthetic samples to pretrain the CNNs model. We then fix the network parameters in the first two convolutional layers and decay the learning rates of the third convolutional layer and the FC layer. Using the real samples to fine-tune the pretrained CNNs model with epoch increasing. The optimal predictor is finally trained well for gas-bearing prediction. The method is applied to a real work area of deep tight dolomite reservoir located in western China covering approximately 800 km <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> . Examples illustrate the roles of transfer learning on improving gas-bearing distribution of deep tight dolomite reservoirs and increasing the generalization of the method." @default.
- W3106541595 created "2020-11-23" @default.
- W3106541595 creator A5008135736 @default.
- W3106541595 creator A5055139497 @default.
- W3106541595 creator A5062494751 @default.
- W3106541595 creator A5090964459 @default.
- W3106541595 date "2022-01-01" @default.
- W3106541595 modified "2023-09-25" @default.
- W3106541595 title "Gas-Bearing Prediction Using Transfer Learning and CNNs: An Application to a Deep Tight Dolomite Reservoir" @default.
- W3106541595 cites W1971971422 @default.
- W3106541595 cites W2019260018 @default.
- W3106541595 cites W2050277054 @default.
- W3106541595 cites W2112796928 @default.
- W3106541595 cites W2113143455 @default.
- W3106541595 cites W2127679163 @default.
- W3106541595 cites W2165698076 @default.
- W3106541595 cites W2312938486 @default.
- W3106541595 cites W2400581787 @default.
- W3106541595 cites W2737396798 @default.
- W3106541595 cites W2781854221 @default.
- W3106541595 cites W2901086698 @default.
- W3106541595 cites W2919115771 @default.
- W3106541595 cites W2993759822 @default.
- W3106541595 doi "https://doi.org/10.1109/lgrs.2020.3035568" @default.
- W3106541595 hasPublicationYear "2022" @default.
- W3106541595 type Work @default.
- W3106541595 sameAs 3106541595 @default.
- W3106541595 citedByCount "11" @default.
- W3106541595 countsByYear W31065415952021 @default.
- W3106541595 countsByYear W31065415952022 @default.
- W3106541595 countsByYear W31065415952023 @default.
- W3106541595 crossrefType "journal-article" @default.
- W3106541595 hasAuthorship W3106541595A5008135736 @default.
- W3106541595 hasAuthorship W3106541595A5055139497 @default.
- W3106541595 hasAuthorship W3106541595A5062494751 @default.
- W3106541595 hasAuthorship W3106541595A5090964459 @default.
- W3106541595 hasConcept C108583219 @default.
- W3106541595 hasConcept C119857082 @default.
- W3106541595 hasConcept C127313418 @default.
- W3106541595 hasConcept C150899416 @default.
- W3106541595 hasConcept C153180895 @default.
- W3106541595 hasConcept C154945302 @default.
- W3106541595 hasConcept C199289684 @default.
- W3106541595 hasConcept C2777447996 @default.
- W3106541595 hasConcept C2779096232 @default.
- W3106541595 hasConcept C2780181037 @default.
- W3106541595 hasConcept C41008148 @default.
- W3106541595 hasConcept C52622490 @default.
- W3106541595 hasConcept C78762247 @default.
- W3106541595 hasConcept C81363708 @default.
- W3106541595 hasConceptScore W3106541595C108583219 @default.
- W3106541595 hasConceptScore W3106541595C119857082 @default.
- W3106541595 hasConceptScore W3106541595C127313418 @default.
- W3106541595 hasConceptScore W3106541595C150899416 @default.
- W3106541595 hasConceptScore W3106541595C153180895 @default.
- W3106541595 hasConceptScore W3106541595C154945302 @default.
- W3106541595 hasConceptScore W3106541595C199289684 @default.
- W3106541595 hasConceptScore W3106541595C2777447996 @default.
- W3106541595 hasConceptScore W3106541595C2779096232 @default.
- W3106541595 hasConceptScore W3106541595C2780181037 @default.
- W3106541595 hasConceptScore W3106541595C41008148 @default.
- W3106541595 hasConceptScore W3106541595C52622490 @default.
- W3106541595 hasConceptScore W3106541595C78762247 @default.
- W3106541595 hasConceptScore W3106541595C81363708 @default.
- W3106541595 hasFunder F4320321001 @default.
- W3106541595 hasFunder F4320335960 @default.
- W3106541595 hasLocation W31065415951 @default.
- W3106541595 hasOpenAccess W3106541595 @default.
- W3106541595 hasPrimaryLocation W31065415951 @default.
- W3106541595 hasRelatedWork W2732542196 @default.
- W3106541595 hasRelatedWork W2738221750 @default.
- W3106541595 hasRelatedWork W2800691917 @default.
- W3106541595 hasRelatedWork W2946016983 @default.
- W3106541595 hasRelatedWork W2963958939 @default.
- W3106541595 hasRelatedWork W3106541595 @default.
- W3106541595 hasRelatedWork W3173182854 @default.
- W3106541595 hasRelatedWork W3192840557 @default.
- W3106541595 hasRelatedWork W4287009405 @default.
- W3106541595 hasRelatedWork W4366224123 @default.
- W3106541595 hasVolume "19" @default.
- W3106541595 isParatext "false" @default.
- W3106541595 isRetracted "false" @default.
- W3106541595 magId "3106541595" @default.
- W3106541595 workType "article" @default.