Matches in SemOpenAlex for { <https://semopenalex.org/work/W3106544740> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3106544740 abstract "Hydrogen leakage is a serious safety issue of pure hydrogen energy usage, since if it mixes with air, fire or explosion can be produced. In this study, the turbulent flow of hydrogen buoyant jet resulting from hydrogen leakage has been investigated using machine learning techniques. A mixed empirical-analytical-numerical model has been developed to describe the problem under consideration. The mass, momentum and concentration fluxes are represented by integral formulae and transformed into a set of ordinary differential equations, which are solved numerically. Therefore, important physical quantities such as the hydrogen mass fraction have been determined. Some machine learning techniques have been selected to forecasting the concentration distribution of hydrogen in air, including Linear Regression (LR), Artificial Neural Networks (ANNs), Support Vector Regression (SVR), k-Nearest Neighbour (k-NN), Random Forest (RF), Random Tree (RT) and REP Tree (REPT) techniques. It was found that the RF method is the best technique to predict the hydrogen leakage distribution in air." @default.
- W3106544740 created "2020-12-07" @default.
- W3106544740 creator A5068074876 @default.
- W3106544740 creator A5076009908 @default.
- W3106544740 date "2020-10-13" @default.
- W3106544740 modified "2023-10-14" @default.
- W3106544740 title "Forecasting a Small-Scale Hydrogen Leakage in Air using Machine Learning Techniques" @default.
- W3106544740 cites W1526441817 @default.
- W3106544740 cites W1554944419 @default.
- W3106544740 cites W1570448133 @default.
- W3106544740 cites W1968046866 @default.
- W3106544740 cites W1977596813 @default.
- W3106544740 cites W2003834491 @default.
- W3106544740 cites W2033427100 @default.
- W3106544740 cites W2033862441 @default.
- W3106544740 cites W2045873264 @default.
- W3106544740 cites W2057936307 @default.
- W3106544740 cites W2063903568 @default.
- W3106544740 cites W2070846660 @default.
- W3106544740 cites W2071379956 @default.
- W3106544740 cites W2079556519 @default.
- W3106544740 cites W2081562213 @default.
- W3106544740 cites W2083582944 @default.
- W3106544740 cites W2140190241 @default.
- W3106544740 cites W2183638453 @default.
- W3106544740 cites W2399706582 @default.
- W3106544740 cites W2572312123 @default.
- W3106544740 cites W2588961873 @default.
- W3106544740 cites W2794778778 @default.
- W3106544740 cites W619827650 @default.
- W3106544740 doi "https://doi.org/10.1109/iccis49240.2020.9257718" @default.
- W3106544740 hasPublicationYear "2020" @default.
- W3106544740 type Work @default.
- W3106544740 sameAs 3106544740 @default.
- W3106544740 citedByCount "2" @default.
- W3106544740 countsByYear W31065447402021 @default.
- W3106544740 countsByYear W31065447402023 @default.
- W3106544740 crossrefType "proceedings-article" @default.
- W3106544740 hasAuthorship W3106544740A5068074876 @default.
- W3106544740 hasAuthorship W3106544740A5076009908 @default.
- W3106544740 hasConcept C119857082 @default.
- W3106544740 hasConcept C121332964 @default.
- W3106544740 hasConcept C139719470 @default.
- W3106544740 hasConcept C154945302 @default.
- W3106544740 hasConcept C162324750 @default.
- W3106544740 hasConcept C178790620 @default.
- W3106544740 hasConcept C185592680 @default.
- W3106544740 hasConcept C2777042071 @default.
- W3106544740 hasConcept C2778755073 @default.
- W3106544740 hasConcept C41008148 @default.
- W3106544740 hasConcept C512968161 @default.
- W3106544740 hasConcept C62520636 @default.
- W3106544740 hasConceptScore W3106544740C119857082 @default.
- W3106544740 hasConceptScore W3106544740C121332964 @default.
- W3106544740 hasConceptScore W3106544740C139719470 @default.
- W3106544740 hasConceptScore W3106544740C154945302 @default.
- W3106544740 hasConceptScore W3106544740C162324750 @default.
- W3106544740 hasConceptScore W3106544740C178790620 @default.
- W3106544740 hasConceptScore W3106544740C185592680 @default.
- W3106544740 hasConceptScore W3106544740C2777042071 @default.
- W3106544740 hasConceptScore W3106544740C2778755073 @default.
- W3106544740 hasConceptScore W3106544740C41008148 @default.
- W3106544740 hasConceptScore W3106544740C512968161 @default.
- W3106544740 hasConceptScore W3106544740C62520636 @default.
- W3106544740 hasLocation W31065447401 @default.
- W3106544740 hasOpenAccess W3106544740 @default.
- W3106544740 hasPrimaryLocation W31065447401 @default.
- W3106544740 hasRelatedWork W2961085424 @default.
- W3106544740 hasRelatedWork W3046775127 @default.
- W3106544740 hasRelatedWork W3107474891 @default.
- W3106544740 hasRelatedWork W3170094116 @default.
- W3106544740 hasRelatedWork W3209574120 @default.
- W3106544740 hasRelatedWork W4205958290 @default.
- W3106544740 hasRelatedWork W4286629047 @default.
- W3106544740 hasRelatedWork W4306321456 @default.
- W3106544740 hasRelatedWork W4306674287 @default.
- W3106544740 hasRelatedWork W4224009465 @default.
- W3106544740 isParatext "false" @default.
- W3106544740 isRetracted "false" @default.
- W3106544740 magId "3106544740" @default.
- W3106544740 workType "article" @default.