Matches in SemOpenAlex for { <https://semopenalex.org/work/W3106547568> ?p ?o ?g. }
- W3106547568 endingPage "222976" @default.
- W3106547568 startingPage "222966" @default.
- W3106547568 abstract "One of the challenges in emotion recognition is finding an effective way to represent spatial-temporal features from EEG. To fully utilize the features on multiple dimensions of EEG signals, we propose a parallel sequence-channel projection convolutional neural network, including temporal stream sub-network, spatial stream sub-network, and fusion classification block. Temporal stream extracts temporal continuity via sequence-projection layer while spatial stream captures spatial correlation via channel-projection layer. Both sequence-projection and channel-projection adopt length-synchronized convolutional kernel to decode whole time and space information. The size of length-synchronized convolutional kernel is equal to the length of transmitted EEG sequence. The fusion classification block combines the extracted temporal and spatial features into a joint spatial-temporal feature vector for emotion prediction. In addition, we present a baseline noise filtering module to amplify input signals and a random channels exchange strategy to enrich the baseline-removed emotional signals. Experimental evaluation on DEAP dataset reveals that the proposed method achieves state-of-the-art classification performance for the binary classification task. The recognition accuracies reach to 96.16% and 95.89% for valence and arousal. The proposed method can improve 3% to 6% than other latest advanced works." @default.
- W3106547568 created "2020-12-07" @default.
- W3106547568 creator A5001251521 @default.
- W3106547568 creator A5021736084 @default.
- W3106547568 creator A5044203269 @default.
- W3106547568 creator A5061896813 @default.
- W3106547568 creator A5062101529 @default.
- W3106547568 date "2020-01-01" @default.
- W3106547568 modified "2023-10-16" @default.
- W3106547568 title "Parallel Sequence-Channel Projection Convolutional Neural Network for EEG-Based Emotion Recognition" @default.
- W3106547568 cites W1689644917 @default.
- W3106547568 cites W1947251450 @default.
- W3106547568 cites W1970727126 @default.
- W3106547568 cites W1971557940 @default.
- W3106547568 cites W2002055708 @default.
- W3106547568 cites W2006626130 @default.
- W3106547568 cites W2016589492 @default.
- W3106547568 cites W2023081950 @default.
- W3106547568 cites W2064675550 @default.
- W3106547568 cites W2064770205 @default.
- W3106547568 cites W2081420711 @default.
- W3106547568 cites W2117645142 @default.
- W3106547568 cites W2122111042 @default.
- W3106547568 cites W2132889650 @default.
- W3106547568 cites W2140121947 @default.
- W3106547568 cites W2141504882 @default.
- W3106547568 cites W2149628368 @default.
- W3106547568 cites W2162418306 @default.
- W3106547568 cites W2190982124 @default.
- W3106547568 cites W2289714406 @default.
- W3106547568 cites W2343835401 @default.
- W3106547568 cites W2507636500 @default.
- W3106547568 cites W2613375858 @default.
- W3106547568 cites W2625929003 @default.
- W3106547568 cites W2766396105 @default.
- W3106547568 cites W2772766867 @default.
- W3106547568 cites W2774942496 @default.
- W3106547568 cites W2790404832 @default.
- W3106547568 cites W2793668851 @default.
- W3106547568 cites W2797503983 @default.
- W3106547568 cites W2884935442 @default.
- W3106547568 cites W2895904856 @default.
- W3106547568 cites W2896297654 @default.
- W3106547568 cites W2913201307 @default.
- W3106547568 cites W2917452308 @default.
- W3106547568 cites W2919115771 @default.
- W3106547568 cites W2943495380 @default.
- W3106547568 cites W2962905870 @default.
- W3106547568 cites W2969377765 @default.
- W3106547568 cites W2970007912 @default.
- W3106547568 cites W2974456825 @default.
- W3106547568 cites W2975452052 @default.
- W3106547568 cites W2981851169 @default.
- W3106547568 cites W2997540115 @default.
- W3106547568 cites W3006715241 @default.
- W3106547568 cites W3008290004 @default.
- W3106547568 cites W3012998522 @default.
- W3106547568 cites W3032135501 @default.
- W3106547568 cites W3033971658 @default.
- W3106547568 cites W3088256290 @default.
- W3106547568 cites W3103608651 @default.
- W3106547568 cites W4236533540 @default.
- W3106547568 cites W4239510810 @default.
- W3106547568 doi "https://doi.org/10.1109/access.2020.3039542" @default.
- W3106547568 hasPublicationYear "2020" @default.
- W3106547568 type Work @default.
- W3106547568 sameAs 3106547568 @default.
- W3106547568 citedByCount "5" @default.
- W3106547568 countsByYear W31065475682021 @default.
- W3106547568 countsByYear W31065475682022 @default.
- W3106547568 countsByYear W31065475682023 @default.
- W3106547568 crossrefType "journal-article" @default.
- W3106547568 hasAuthorship W3106547568A5001251521 @default.
- W3106547568 hasAuthorship W3106547568A5021736084 @default.
- W3106547568 hasAuthorship W3106547568A5044203269 @default.
- W3106547568 hasAuthorship W3106547568A5061896813 @default.
- W3106547568 hasAuthorship W3106547568A5062101529 @default.
- W3106547568 hasBestOaLocation W31065475681 @default.
- W3106547568 hasConcept C11413529 @default.
- W3106547568 hasConcept C114614502 @default.
- W3106547568 hasConcept C12267149 @default.
- W3106547568 hasConcept C153180895 @default.
- W3106547568 hasConcept C154945302 @default.
- W3106547568 hasConcept C33923547 @default.
- W3106547568 hasConcept C41008148 @default.
- W3106547568 hasConcept C52622490 @default.
- W3106547568 hasConcept C57493831 @default.
- W3106547568 hasConcept C74193536 @default.
- W3106547568 hasConcept C81363708 @default.
- W3106547568 hasConcept C83665646 @default.
- W3106547568 hasConceptScore W3106547568C11413529 @default.
- W3106547568 hasConceptScore W3106547568C114614502 @default.
- W3106547568 hasConceptScore W3106547568C12267149 @default.
- W3106547568 hasConceptScore W3106547568C153180895 @default.
- W3106547568 hasConceptScore W3106547568C154945302 @default.
- W3106547568 hasConceptScore W3106547568C33923547 @default.
- W3106547568 hasConceptScore W3106547568C41008148 @default.
- W3106547568 hasConceptScore W3106547568C52622490 @default.