Matches in SemOpenAlex for { <https://semopenalex.org/work/W3106552016> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W3106552016 abstract "The cutting-edge wireless technologies offer huge array of services, from ultra-high-speed data communications to internet of things. But the current existing infrastructure cannot handle these use cases. Consequently, it is becoming a trend to apply computational intelligence algorithms such as machine learning (ML), deep learning (DL), reinforcement learning (RL) and artificial intelligence (AI) to wireless network infrastructures. And one of these applications is on wireless indoor localization. Wireless indoor localization takes advantage of wireless access points (WAPs) received signal strength indicators (RSSI) values to pinpoint the location of a user, similar to concept of GPS but indoors. The goal of this paper is to develop predictive models that can be used to predict the location of a user using RSSI readings that his smartphone receives. In this study, four ML algorithms are used which are support vector machines, random forest, Naïve-Bayes classifier and neural networks. The accuracy of each model are 97.83%, 97.67%, 98.50% and 97.33% respectively. Also, a recursive feature elimination algorithm is also used to determine the predictor that has the least impact amongst all other features and it is found out in the study that WAP2 is contributes the least influence when the predictive models are developed." @default.
- W3106552016 created "2020-12-07" @default.
- W3106552016 creator A5067207486 @default.
- W3106552016 creator A5081061811 @default.
- W3106552016 date "2020-08-21" @default.
- W3106552016 modified "2023-10-16" @default.
- W3106552016 title "Development of Machine Learning-based Predictive Models for Wireless Indoor Localization Application with Feature Ranking via Recursive Feature Elimination Algorithm" @default.
- W3106552016 cites W2069601023 @default.
- W3106552016 cites W2562947506 @default.
- W3106552016 cites W2586074992 @default.
- W3106552016 cites W2591079949 @default.
- W3106552016 cites W2602923095 @default.
- W3106552016 cites W2767151733 @default.
- W3106552016 cites W2783742330 @default.
- W3106552016 cites W2784053764 @default.
- W3106552016 cites W2919888498 @default.
- W3106552016 cites W2920331130 @default.
- W3106552016 doi "https://doi.org/10.1109/icspcc50002.2020.9259526" @default.
- W3106552016 hasPublicationYear "2020" @default.
- W3106552016 type Work @default.
- W3106552016 sameAs 3106552016 @default.
- W3106552016 citedByCount "0" @default.
- W3106552016 crossrefType "proceedings-article" @default.
- W3106552016 hasAuthorship W3106552016A5067207486 @default.
- W3106552016 hasAuthorship W3106552016A5081061811 @default.
- W3106552016 hasConcept C108037233 @default.
- W3106552016 hasConcept C11413529 @default.
- W3106552016 hasConcept C119857082 @default.
- W3106552016 hasConcept C12267149 @default.
- W3106552016 hasConcept C138885662 @default.
- W3106552016 hasConcept C154945302 @default.
- W3106552016 hasConcept C169258074 @default.
- W3106552016 hasConcept C2776401178 @default.
- W3106552016 hasConcept C41008148 @default.
- W3106552016 hasConcept C41895202 @default.
- W3106552016 hasConcept C50644808 @default.
- W3106552016 hasConcept C52001869 @default.
- W3106552016 hasConcept C52622490 @default.
- W3106552016 hasConcept C555944384 @default.
- W3106552016 hasConcept C76155785 @default.
- W3106552016 hasConceptScore W3106552016C108037233 @default.
- W3106552016 hasConceptScore W3106552016C11413529 @default.
- W3106552016 hasConceptScore W3106552016C119857082 @default.
- W3106552016 hasConceptScore W3106552016C12267149 @default.
- W3106552016 hasConceptScore W3106552016C138885662 @default.
- W3106552016 hasConceptScore W3106552016C154945302 @default.
- W3106552016 hasConceptScore W3106552016C169258074 @default.
- W3106552016 hasConceptScore W3106552016C2776401178 @default.
- W3106552016 hasConceptScore W3106552016C41008148 @default.
- W3106552016 hasConceptScore W3106552016C41895202 @default.
- W3106552016 hasConceptScore W3106552016C50644808 @default.
- W3106552016 hasConceptScore W3106552016C52001869 @default.
- W3106552016 hasConceptScore W3106552016C52622490 @default.
- W3106552016 hasConceptScore W3106552016C555944384 @default.
- W3106552016 hasConceptScore W3106552016C76155785 @default.
- W3106552016 hasLocation W31065520161 @default.
- W3106552016 hasOpenAccess W3106552016 @default.
- W3106552016 hasPrimaryLocation W31065520161 @default.
- W3106552016 hasRelatedWork W2595988085 @default.
- W3106552016 hasRelatedWork W2979979539 @default.
- W3106552016 hasRelatedWork W2985924212 @default.
- W3106552016 hasRelatedWork W3127425528 @default.
- W3106552016 hasRelatedWork W3143658565 @default.
- W3106552016 hasRelatedWork W3204641204 @default.
- W3106552016 hasRelatedWork W4205958290 @default.
- W3106552016 hasRelatedWork W4283016678 @default.
- W3106552016 hasRelatedWork W4285225238 @default.
- W3106552016 hasRelatedWork W4311106074 @default.
- W3106552016 isParatext "false" @default.
- W3106552016 isRetracted "false" @default.
- W3106552016 magId "3106552016" @default.
- W3106552016 workType "article" @default.