Matches in SemOpenAlex for { <https://semopenalex.org/work/W3106559480> ?p ?o ?g. }
- W3106559480 endingPage "103345" @default.
- W3106559480 startingPage "103345" @default.
- W3106559480 abstract "Predicting the outcomes of a weld based on few metals with respect to its process parameters is a trivial phenomenon. However, the prediction requires complex mathematical formulation when the number of metals grows. The exponential rise in testing data of welding components in recent time, have increased the data inconsistency and complexity by manifolds. Further, the multi-physical characteristic of welding data adds to its chaotic nature. This makes manual or simulation-based extraction of useful information from welded data extremely challenging. Developing predictive models for tensile-shear strength of Resistance Spot Welding (RSW) is highly latency-bound. The recent success of machine learning approaches in variety of fields gives us motivation to address this issue. In this paper, we proposed a machine learning model inspired from random forest (RF) which predicts the tensile-shear strength of nugget from its input parameters and large number of metals. We trained the prediction model using data from 435 spot-welding cases and compared its performance with widely used M5P model tree. For all cases, RF-based prediction model outperforms the M5P model in terms of accuracy. Four different feature extraction techniques namely manual feature selection, correlation attribute eval., classification attribute eval., and reliefF attribute eval. were investigated to improve the performance of random forest model. From these methods, when model is very complex i.e. higher training size, classification attribute eval. provides greater accuracy with RMSETest of 0.5442. Moreover, no overfitting and underfitting was observed in this prediction." @default.
- W3106559480 created "2020-12-07" @default.
- W3106559480 creator A5012057424 @default.
- W3106559480 creator A5043315939 @default.
- W3106559480 date "2021-01-01" @default.
- W3106559480 modified "2023-10-18" @default.
- W3106559480 title "Predicting tensile-shear strength of nugget using M5P model tree and random forest: An analysis" @default.
- W3106559480 cites W1978651196 @default.
- W3106559480 cites W1985722429 @default.
- W3106559480 cites W1991160160 @default.
- W3106559480 cites W1999393241 @default.
- W3106559480 cites W2011421141 @default.
- W3106559480 cites W2017778996 @default.
- W3106559480 cites W2036725634 @default.
- W3106559480 cites W2038223907 @default.
- W3106559480 cites W2050341986 @default.
- W3106559480 cites W2055992220 @default.
- W3106559480 cites W2074506102 @default.
- W3106559480 cites W2074618819 @default.
- W3106559480 cites W2086378469 @default.
- W3106559480 cites W2088751282 @default.
- W3106559480 cites W2155632959 @default.
- W3106559480 cites W2269216170 @default.
- W3106559480 cites W2334255517 @default.
- W3106559480 cites W2411385775 @default.
- W3106559480 cites W2530673601 @default.
- W3106559480 cites W2562120262 @default.
- W3106559480 cites W2567702993 @default.
- W3106559480 cites W2601486059 @default.
- W3106559480 cites W2611675491 @default.
- W3106559480 cites W263666011 @default.
- W3106559480 cites W2727628648 @default.
- W3106559480 cites W2791315675 @default.
- W3106559480 cites W2799581641 @default.
- W3106559480 cites W2902602775 @default.
- W3106559480 cites W2904535356 @default.
- W3106559480 cites W2921474937 @default.
- W3106559480 cites W2944342107 @default.
- W3106559480 cites W2947402339 @default.
- W3106559480 cites W2953490713 @default.
- W3106559480 cites W2956846682 @default.
- W3106559480 cites W2963100393 @default.
- W3106559480 cites W2970591347 @default.
- W3106559480 cites W2972418846 @default.
- W3106559480 cites W2981915020 @default.
- W3106559480 cites W2999783438 @default.
- W3106559480 cites W3005231240 @default.
- W3106559480 cites W3007681970 @default.
- W3106559480 cites W4251338804 @default.
- W3106559480 doi "https://doi.org/10.1016/j.compind.2020.103345" @default.
- W3106559480 hasPublicationYear "2021" @default.
- W3106559480 type Work @default.
- W3106559480 sameAs 3106559480 @default.
- W3106559480 citedByCount "6" @default.
- W3106559480 countsByYear W31065594802021 @default.
- W3106559480 countsByYear W31065594802022 @default.
- W3106559480 countsByYear W31065594802023 @default.
- W3106559480 crossrefType "journal-article" @default.
- W3106559480 hasAuthorship W3106559480A5012057424 @default.
- W3106559480 hasAuthorship W3106559480A5043315939 @default.
- W3106559480 hasConcept C110209231 @default.
- W3106559480 hasConcept C113174947 @default.
- W3106559480 hasConcept C119857082 @default.
- W3106559480 hasConcept C12267149 @default.
- W3106559480 hasConcept C124101348 @default.
- W3106559480 hasConcept C127413603 @default.
- W3106559480 hasConcept C134306372 @default.
- W3106559480 hasConcept C148483581 @default.
- W3106559480 hasConcept C153180895 @default.
- W3106559480 hasConcept C154945302 @default.
- W3106559480 hasConcept C169258074 @default.
- W3106559480 hasConcept C19474535 @default.
- W3106559480 hasConcept C22019652 @default.
- W3106559480 hasConcept C33923547 @default.
- W3106559480 hasConcept C41008148 @default.
- W3106559480 hasConcept C50644808 @default.
- W3106559480 hasConcept C78519656 @default.
- W3106559480 hasConceptScore W3106559480C110209231 @default.
- W3106559480 hasConceptScore W3106559480C113174947 @default.
- W3106559480 hasConceptScore W3106559480C119857082 @default.
- W3106559480 hasConceptScore W3106559480C12267149 @default.
- W3106559480 hasConceptScore W3106559480C124101348 @default.
- W3106559480 hasConceptScore W3106559480C127413603 @default.
- W3106559480 hasConceptScore W3106559480C134306372 @default.
- W3106559480 hasConceptScore W3106559480C148483581 @default.
- W3106559480 hasConceptScore W3106559480C153180895 @default.
- W3106559480 hasConceptScore W3106559480C154945302 @default.
- W3106559480 hasConceptScore W3106559480C169258074 @default.
- W3106559480 hasConceptScore W3106559480C19474535 @default.
- W3106559480 hasConceptScore W3106559480C22019652 @default.
- W3106559480 hasConceptScore W3106559480C33923547 @default.
- W3106559480 hasConceptScore W3106559480C41008148 @default.
- W3106559480 hasConceptScore W3106559480C50644808 @default.
- W3106559480 hasConceptScore W3106559480C78519656 @default.
- W3106559480 hasLocation W31065594801 @default.
- W3106559480 hasOpenAccess W3106559480 @default.
- W3106559480 hasPrimaryLocation W31065594801 @default.
- W3106559480 hasRelatedWork W1996541855 @default.