Matches in SemOpenAlex for { <https://semopenalex.org/work/W3106577699> ?p ?o ?g. }
- W3106577699 endingPage "6609" @default.
- W3106577699 startingPage "6600" @default.
- W3106577699 abstract "Feature extraction from a time sequence signal without manual information is an important part for bearing intelligent diagnosis. With the merits of signal information and feature structure information excavation, Deep ConvNet is widely used in bearing fault diagnosis and analysis under complex working conditions. However, due to the complexity of the bearing operating environment in the actual operation process, the sensitive features show different scale distribution characteristics. Meanwhile, it is known that the convolution kernel of ConvNet is usually small, which mainly focuses on the small-scale details of state distribution characteristics while ignores the identification of the overall trend of characteristic distribution. Considering that the size of convolution kernel can sense information hidden in different scales, this paper designed a one-dimensional vision ConvNet (VCN), where the architecture is composed of multilayer small kernel network and single-layer large kernel network side by side. The multi-kernel structure improves the ability of network to detect fault characteristic frequency band. By analyzing the artificially generated data and experimental data, the setting method of large convolution kernel and stride is discussed. Compared with the traditional CNN, wide first-layer kernels (WDCNN) and multiscale kernel-based ResCNN (MK-ResCNN), this network improves the recognition accuracy with a better stable training process for rolling bearing fault classification." @default.
- W3106577699 created "2020-12-07" @default.
- W3106577699 creator A5007293606 @default.
- W3106577699 creator A5021171895 @default.
- W3106577699 creator A5034422878 @default.
- W3106577699 creator A5044414878 @default.
- W3106577699 creator A5069181198 @default.
- W3106577699 date "2021-03-01" @default.
- W3106577699 modified "2023-10-16" @default.
- W3106577699 title "Intelligent Rolling Bearing Fault Diagnosis via Vision ConvNet" @default.
- W3106577699 cites W1964511482 @default.
- W3106577699 cites W1984672166 @default.
- W3106577699 cites W1997595920 @default.
- W3106577699 cites W2012290038 @default.
- W3106577699 cites W2039951318 @default.
- W3106577699 cites W2094623746 @default.
- W3106577699 cites W2097117768 @default.
- W3106577699 cites W2099383324 @default.
- W3106577699 cites W2108530032 @default.
- W3106577699 cites W2108744642 @default.
- W3106577699 cites W2116785116 @default.
- W3106577699 cites W2130818170 @default.
- W3106577699 cites W2144187919 @default.
- W3106577699 cites W2145713550 @default.
- W3106577699 cites W2195273494 @default.
- W3106577699 cites W2345764662 @default.
- W3106577699 cites W2461729787 @default.
- W3106577699 cites W2562762876 @default.
- W3106577699 cites W2584994008 @default.
- W3106577699 cites W2595657631 @default.
- W3106577699 cites W2768753204 @default.
- W3106577699 cites W2792018332 @default.
- W3106577699 cites W2802595313 @default.
- W3106577699 cites W2804061829 @default.
- W3106577699 cites W2804879845 @default.
- W3106577699 cites W2973424371 @default.
- W3106577699 cites W2980368258 @default.
- W3106577699 doi "https://doi.org/10.1109/jsen.2020.3042182" @default.
- W3106577699 hasPublicationYear "2021" @default.
- W3106577699 type Work @default.
- W3106577699 sameAs 3106577699 @default.
- W3106577699 citedByCount "34" @default.
- W3106577699 countsByYear W31065776992021 @default.
- W3106577699 countsByYear W31065776992022 @default.
- W3106577699 countsByYear W31065776992023 @default.
- W3106577699 crossrefType "journal-article" @default.
- W3106577699 hasAuthorship W3106577699A5007293606 @default.
- W3106577699 hasAuthorship W3106577699A5021171895 @default.
- W3106577699 hasAuthorship W3106577699A5034422878 @default.
- W3106577699 hasAuthorship W3106577699A5044414878 @default.
- W3106577699 hasAuthorship W3106577699A5069181198 @default.
- W3106577699 hasConcept C108583219 @default.
- W3106577699 hasConcept C111919701 @default.
- W3106577699 hasConcept C114614502 @default.
- W3106577699 hasConcept C124101348 @default.
- W3106577699 hasConcept C127313418 @default.
- W3106577699 hasConcept C138885662 @default.
- W3106577699 hasConcept C153180895 @default.
- W3106577699 hasConcept C154945302 @default.
- W3106577699 hasConcept C165205528 @default.
- W3106577699 hasConcept C175551986 @default.
- W3106577699 hasConcept C199360897 @default.
- W3106577699 hasConcept C199978012 @default.
- W3106577699 hasConcept C2776401178 @default.
- W3106577699 hasConcept C2779843651 @default.
- W3106577699 hasConcept C33923547 @default.
- W3106577699 hasConcept C41008148 @default.
- W3106577699 hasConcept C41895202 @default.
- W3106577699 hasConcept C45347329 @default.
- W3106577699 hasConcept C50644808 @default.
- W3106577699 hasConcept C52622490 @default.
- W3106577699 hasConcept C74193536 @default.
- W3106577699 hasConcept C81363708 @default.
- W3106577699 hasConcept C98045186 @default.
- W3106577699 hasConceptScore W3106577699C108583219 @default.
- W3106577699 hasConceptScore W3106577699C111919701 @default.
- W3106577699 hasConceptScore W3106577699C114614502 @default.
- W3106577699 hasConceptScore W3106577699C124101348 @default.
- W3106577699 hasConceptScore W3106577699C127313418 @default.
- W3106577699 hasConceptScore W3106577699C138885662 @default.
- W3106577699 hasConceptScore W3106577699C153180895 @default.
- W3106577699 hasConceptScore W3106577699C154945302 @default.
- W3106577699 hasConceptScore W3106577699C165205528 @default.
- W3106577699 hasConceptScore W3106577699C175551986 @default.
- W3106577699 hasConceptScore W3106577699C199360897 @default.
- W3106577699 hasConceptScore W3106577699C199978012 @default.
- W3106577699 hasConceptScore W3106577699C2776401178 @default.
- W3106577699 hasConceptScore W3106577699C2779843651 @default.
- W3106577699 hasConceptScore W3106577699C33923547 @default.
- W3106577699 hasConceptScore W3106577699C41008148 @default.
- W3106577699 hasConceptScore W3106577699C41895202 @default.
- W3106577699 hasConceptScore W3106577699C45347329 @default.
- W3106577699 hasConceptScore W3106577699C50644808 @default.
- W3106577699 hasConceptScore W3106577699C52622490 @default.
- W3106577699 hasConceptScore W3106577699C74193536 @default.
- W3106577699 hasConceptScore W3106577699C81363708 @default.
- W3106577699 hasConceptScore W3106577699C98045186 @default.
- W3106577699 hasFunder F4320321001 @default.