Matches in SemOpenAlex for { <https://semopenalex.org/work/W3106616721> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3106616721 endingPage "10" @default.
- W3106616721 startingPage "1" @default.
- W3106616721 abstract "To date, the Medical Internet of Things (MIoT) technology has been recognized and widely applied due to its convenience and practicality. The MIoT enables the application of machine learning to predict diseases of various kinds automatically and accurately, assisting and facilitating effective and efficient medical treatment. However, the MIoT are vulnerable to cyberattacks which have been constantly advancing. In this paper, we establish a MIoT platform and demonstrate a scenario where a trained Convolutional Neural Network (CNN) model for predicting lung cancer complicated with pulmonary embolism can be attacked. First, we use CNN to build a model to predict lung cancer complicated with pulmonary embolism and obtain high detection accuracy. Then, we build a copycat model using only a small amount of data labeled by the target network, aiming to steal the established prediction model. Experimental results prove that the stolen model can also achieve a relatively high prediction outcome, revealing that the copycat network could successfully copy the prediction performance from the target network to a large extent. This also shows that such a prediction model deployed on MIoT devices can be stolen by attackers, and effective prevention strategies are open questions for researchers." @default.
- W3106616721 created "2020-12-07" @default.
- W3106616721 creator A5049712745 @default.
- W3106616721 creator A5055720544 @default.
- W3106616721 creator A5056896173 @default.
- W3106616721 creator A5062680776 @default.
- W3106616721 creator A5085946103 @default.
- W3106616721 creator A5089171585 @default.
- W3106616721 date "2020-11-26" @default.
- W3106616721 modified "2023-10-18" @default.
- W3106616721 title "Neural Model Stealing Attack to Smart Mobile Device on Intelligent Medical Platform" @default.
- W3106616721 cites W2004984102 @default.
- W3106616721 cites W2286586414 @default.
- W3106616721 cites W2308814875 @default.
- W3106616721 cites W2561342496 @default.
- W3106616721 cites W2606537796 @default.
- W3106616721 cites W2785446263 @default.
- W3106616721 cites W2790664081 @default.
- W3106616721 cites W2792707772 @default.
- W3106616721 cites W2808195004 @default.
- W3106616721 cites W2883491925 @default.
- W3106616721 cites W2890349115 @default.
- W3106616721 cites W2905097561 @default.
- W3106616721 cites W2962949934 @default.
- W3106616721 cites W2981023147 @default.
- W3106616721 cites W2996089418 @default.
- W3106616721 cites W3004824547 @default.
- W3106616721 cites W3011056055 @default.
- W3106616721 cites W3033777149 @default.
- W3106616721 cites W3042888165 @default.
- W3106616721 doi "https://doi.org/10.1155/2020/8859489" @default.
- W3106616721 hasPublicationYear "2020" @default.
- W3106616721 type Work @default.
- W3106616721 sameAs 3106616721 @default.
- W3106616721 citedByCount "4" @default.
- W3106616721 countsByYear W31066167212022 @default.
- W3106616721 crossrefType "journal-article" @default.
- W3106616721 hasAuthorship W3106616721A5049712745 @default.
- W3106616721 hasAuthorship W3106616721A5055720544 @default.
- W3106616721 hasAuthorship W3106616721A5056896173 @default.
- W3106616721 hasAuthorship W3106616721A5062680776 @default.
- W3106616721 hasAuthorship W3106616721A5085946103 @default.
- W3106616721 hasAuthorship W3106616721A5089171585 @default.
- W3106616721 hasBestOaLocation W31066167211 @default.
- W3106616721 hasConcept C110875604 @default.
- W3106616721 hasConcept C119857082 @default.
- W3106616721 hasConcept C130191384 @default.
- W3106616721 hasConcept C136764020 @default.
- W3106616721 hasConcept C154945302 @default.
- W3106616721 hasConcept C38652104 @default.
- W3106616721 hasConcept C41008148 @default.
- W3106616721 hasConcept C50644808 @default.
- W3106616721 hasConcept C81363708 @default.
- W3106616721 hasConceptScore W3106616721C110875604 @default.
- W3106616721 hasConceptScore W3106616721C119857082 @default.
- W3106616721 hasConceptScore W3106616721C130191384 @default.
- W3106616721 hasConceptScore W3106616721C136764020 @default.
- W3106616721 hasConceptScore W3106616721C154945302 @default.
- W3106616721 hasConceptScore W3106616721C38652104 @default.
- W3106616721 hasConceptScore W3106616721C41008148 @default.
- W3106616721 hasConceptScore W3106616721C50644808 @default.
- W3106616721 hasConceptScore W3106616721C81363708 @default.
- W3106616721 hasFunder F4320306076 @default.
- W3106616721 hasLocation W31066167211 @default.
- W3106616721 hasOpenAccess W3106616721 @default.
- W3106616721 hasPrimaryLocation W31066167211 @default.
- W3106616721 hasRelatedWork W1436644918 @default.
- W3106616721 hasRelatedWork W1563668253 @default.
- W3106616721 hasRelatedWork W2024385268 @default.
- W3106616721 hasRelatedWork W2045147563 @default.
- W3106616721 hasRelatedWork W2126064811 @default.
- W3106616721 hasRelatedWork W2613429440 @default.
- W3106616721 hasRelatedWork W2991511628 @default.
- W3106616721 hasRelatedWork W4283011426 @default.
- W3106616721 hasRelatedWork W4327671695 @default.
- W3106616721 hasRelatedWork W627496254 @default.
- W3106616721 hasVolume "2020" @default.
- W3106616721 isParatext "false" @default.
- W3106616721 isRetracted "false" @default.
- W3106616721 magId "3106616721" @default.
- W3106616721 workType "article" @default.