Matches in SemOpenAlex for { <https://semopenalex.org/work/W3106643997> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3106643997 endingPage "299" @default.
- W3106643997 startingPage "287" @default.
- W3106643997 abstract "We present an efficient coreset construction algorithm for large-scale Support Vector Machine (SVM) training in Big Data and streaming applications. A coreset is a small, representative subset of the original data points such that a models trained on the coreset are provably competitive with those trained on the original data set. Since the size of the coreset is generally much smaller than the original set, our preprocess-then-train scheme has potential to lead to significant speedups when training SVM models. We prove lower and upper bounds on the size of the coreset required to obtain small data summaries for the SVM problem. As a corollary, we show that our algorithm can be used to extend the applicability of any off-the-shelf SVM solver to streaming, distributed, and dynamic data settings. We evaluate the performance of our algorithm on real-world and synthetic data sets. Our experimental results reaffirm the favorable theoretical properties of our algorithm and demonstrate its practical effectiveness in accelerating SVM training." @default.
- W3106643997 created "2020-12-07" @default.
- W3106643997 creator A5006739892 @default.
- W3106643997 creator A5066431761 @default.
- W3106643997 creator A5066830185 @default.
- W3106643997 creator A5082255004 @default.
- W3106643997 date "2020-01-01" @default.
- W3106643997 modified "2023-10-10" @default.
- W3106643997 title "On Coresets for Support Vector Machines" @default.
- W3106643997 cites W1981773323 @default.
- W3106643997 cites W1985142965 @default.
- W3106643997 cites W2027560232 @default.
- W3106643997 cites W2035720976 @default.
- W3106643997 cites W2045964207 @default.
- W3106643997 cites W2105867876 @default.
- W3106643997 cites W2125993116 @default.
- W3106643997 cites W2544661862 @default.
- W3106643997 cites W2978660978 @default.
- W3106643997 cites W4236343967 @default.
- W3106643997 cites W4247692611 @default.
- W3106643997 doi "https://doi.org/10.1007/978-3-030-59267-7_25" @default.
- W3106643997 hasPublicationYear "2020" @default.
- W3106643997 type Work @default.
- W3106643997 sameAs 3106643997 @default.
- W3106643997 citedByCount "4" @default.
- W3106643997 countsByYear W31066439972021 @default.
- W3106643997 countsByYear W31066439972022 @default.
- W3106643997 crossrefType "book-chapter" @default.
- W3106643997 hasAuthorship W3106643997A5006739892 @default.
- W3106643997 hasAuthorship W3106643997A5066431761 @default.
- W3106643997 hasAuthorship W3106643997A5066830185 @default.
- W3106643997 hasAuthorship W3106643997A5082255004 @default.
- W3106643997 hasBestOaLocation W31066439972 @default.
- W3106643997 hasConcept C11413529 @default.
- W3106643997 hasConcept C119857082 @default.
- W3106643997 hasConcept C12267149 @default.
- W3106643997 hasConcept C124101348 @default.
- W3106643997 hasConcept C134306372 @default.
- W3106643997 hasConcept C154945302 @default.
- W3106643997 hasConcept C177264268 @default.
- W3106643997 hasConcept C199360897 @default.
- W3106643997 hasConcept C202444582 @default.
- W3106643997 hasConcept C2778770139 @default.
- W3106643997 hasConcept C2779280203 @default.
- W3106643997 hasConcept C2780012671 @default.
- W3106643997 hasConcept C33923547 @default.
- W3106643997 hasConcept C41008148 @default.
- W3106643997 hasConcept C51632099 @default.
- W3106643997 hasConcept C58489278 @default.
- W3106643997 hasConcept C75684735 @default.
- W3106643997 hasConcept C77618280 @default.
- W3106643997 hasConceptScore W3106643997C11413529 @default.
- W3106643997 hasConceptScore W3106643997C119857082 @default.
- W3106643997 hasConceptScore W3106643997C12267149 @default.
- W3106643997 hasConceptScore W3106643997C124101348 @default.
- W3106643997 hasConceptScore W3106643997C134306372 @default.
- W3106643997 hasConceptScore W3106643997C154945302 @default.
- W3106643997 hasConceptScore W3106643997C177264268 @default.
- W3106643997 hasConceptScore W3106643997C199360897 @default.
- W3106643997 hasConceptScore W3106643997C202444582 @default.
- W3106643997 hasConceptScore W3106643997C2778770139 @default.
- W3106643997 hasConceptScore W3106643997C2779280203 @default.
- W3106643997 hasConceptScore W3106643997C2780012671 @default.
- W3106643997 hasConceptScore W3106643997C33923547 @default.
- W3106643997 hasConceptScore W3106643997C41008148 @default.
- W3106643997 hasConceptScore W3106643997C51632099 @default.
- W3106643997 hasConceptScore W3106643997C58489278 @default.
- W3106643997 hasConceptScore W3106643997C75684735 @default.
- W3106643997 hasConceptScore W3106643997C77618280 @default.
- W3106643997 hasLocation W31066439971 @default.
- W3106643997 hasLocation W31066439972 @default.
- W3106643997 hasLocation W31066439973 @default.
- W3106643997 hasOpenAccess W3106643997 @default.
- W3106643997 hasPrimaryLocation W31066439971 @default.
- W3106643997 hasRelatedWork W2786391746 @default.
- W3106643997 hasRelatedWork W2914559142 @default.
- W3106643997 hasRelatedWork W2991483587 @default.
- W3106643997 hasRelatedWork W2995102745 @default.
- W3106643997 hasRelatedWork W3132346564 @default.
- W3106643997 hasRelatedWork W4225292444 @default.
- W3106643997 hasRelatedWork W4226059458 @default.
- W3106643997 hasRelatedWork W4286892028 @default.
- W3106643997 hasRelatedWork W4361733581 @default.
- W3106643997 hasRelatedWork W4381430104 @default.
- W3106643997 isParatext "false" @default.
- W3106643997 isRetracted "false" @default.
- W3106643997 magId "3106643997" @default.
- W3106643997 workType "book-chapter" @default.