Matches in SemOpenAlex for { <https://semopenalex.org/work/W3106670450> ?p ?o ?g. }
- W3106670450 endingPage "696" @default.
- W3106670450 startingPage "696" @default.
- W3106670450 abstract "The purpose of this study is to compare nine models, composed of certainty factors (CFs), weights of evidence (WoE), evidential belief function (EBF) and two machine learning models, namely random forest (RF) and support vector machine (SVM). In the first step, fifteen landslide conditioning factors were selected to prepare thematic maps, including slope aspect, slope angle, elevation, stream power index (SPI), sediment transport index (STI), topographic wetness index (TWI), plan curvature, profile curvature, land use, normalized difference vegetation index (NDVI), soil, lithology, rainfall, distance to rivers and distance to roads. In the second step, 152 landslides were randomly divided into two groups at a ratio of 70/30 as the training and validation datasets. In the third step, the weights of the CF, WoE and EBF models for conditioning factor were calculated separately, and the weights were used to generate the landslide susceptibility maps. The weights of each bivariate model were substituted into the RF and SVM models, respectively, and six integrated models and landslide susceptibility maps were obtained. In the fourth step, the receiver operating characteristic (ROC) curve and related parameters were used for verification and comparison, and then the success rate curve and the prediction rate curves were used for re-analysis. The comprehensive results showed that the hybrid model is superior to the bivariate model, and all nine models have excellent performance. The WoE–RF model has the highest predictive ability (AUC_T: 0.9993, AUC_P: 0.8968). The landslide susceptibility maps produced in this study can be used to manage landslide hazard and risk in Linyou County and other similar areas." @default.
- W3106670450 created "2020-12-07" @default.
- W3106670450 creator A5032441349 @default.
- W3106670450 creator A5032509814 @default.
- W3106670450 creator A5058653182 @default.
- W3106670450 creator A5059714048 @default.
- W3106670450 creator A5063537118 @default.
- W3106670450 creator A5091211368 @default.
- W3106670450 date "2020-11-24" @default.
- W3106670450 modified "2023-10-04" @default.
- W3106670450 title "Performance Evaluation and Comparison of Bivariate Statistical-Based Artificial Intelligence Algorithms for Spatial Prediction of Landslides" @default.
- W3106670450 cites W1602576879 @default.
- W3106670450 cites W188378287 @default.
- W3106670450 cites W1978153166 @default.
- W3106670450 cites W1979283365 @default.
- W3106670450 cites W1979486410 @default.
- W3106670450 cites W1982623886 @default.
- W3106670450 cites W1984065426 @default.
- W3106670450 cites W1987226764 @default.
- W3106670450 cites W1988650824 @default.
- W3106670450 cites W1995113165 @default.
- W3106670450 cites W2001617968 @default.
- W3106670450 cites W2001665101 @default.
- W3106670450 cites W2007128964 @default.
- W3106670450 cites W2008827496 @default.
- W3106670450 cites W2012118327 @default.
- W3106670450 cites W2013713766 @default.
- W3106670450 cites W2017388337 @default.
- W3106670450 cites W2020356737 @default.
- W3106670450 cites W2021638458 @default.
- W3106670450 cites W2030675529 @default.
- W3106670450 cites W2037630084 @default.
- W3106670450 cites W2039428711 @default.
- W3106670450 cites W2063958435 @default.
- W3106670450 cites W2065949495 @default.
- W3106670450 cites W2067070649 @default.
- W3106670450 cites W2069930921 @default.
- W3106670450 cites W2071760479 @default.
- W3106670450 cites W2072050383 @default.
- W3106670450 cites W2075496252 @default.
- W3106670450 cites W2077483615 @default.
- W3106670450 cites W2081620141 @default.
- W3106670450 cites W2082622325 @default.
- W3106670450 cites W2083202425 @default.
- W3106670450 cites W2086063614 @default.
- W3106670450 cites W2088366322 @default.
- W3106670450 cites W2090715229 @default.
- W3106670450 cites W2092803403 @default.
- W3106670450 cites W2093240489 @default.
- W3106670450 cites W2093703725 @default.
- W3106670450 cites W2095555151 @default.
- W3106670450 cites W2120630093 @default.
- W3106670450 cites W2124217455 @default.
- W3106670450 cites W2139479705 @default.
- W3106670450 cites W2140679062 @default.
- W3106670450 cites W2143296882 @default.
- W3106670450 cites W2157227910 @default.
- W3106670450 cites W2163713798 @default.
- W3106670450 cites W2171612326 @default.
- W3106670450 cites W2221487567 @default.
- W3106670450 cites W2266000645 @default.
- W3106670450 cites W2269516007 @default.
- W3106670450 cites W2280221537 @default.
- W3106670450 cites W2287788949 @default.
- W3106670450 cites W2293107680 @default.
- W3106670450 cites W2302877473 @default.
- W3106670450 cites W2417137833 @default.
- W3106670450 cites W2464115047 @default.
- W3106670450 cites W2523887947 @default.
- W3106670450 cites W2549738792 @default.
- W3106670450 cites W2584860397 @default.
- W3106670450 cites W2592479876 @default.
- W3106670450 cites W2614698691 @default.
- W3106670450 cites W2617146439 @default.
- W3106670450 cites W2731040012 @default.
- W3106670450 cites W2754252800 @default.
- W3106670450 cites W2758350461 @default.
- W3106670450 cites W2793729791 @default.
- W3106670450 cites W2799444970 @default.
- W3106670450 cites W2810912679 @default.
- W3106670450 cites W2899803585 @default.
- W3106670450 cites W2905155550 @default.
- W3106670450 cites W2911253733 @default.
- W3106670450 cites W2911964244 @default.
- W3106670450 cites W2913214568 @default.
- W3106670450 cites W2921093430 @default.
- W3106670450 cites W2939945347 @default.
- W3106670450 cites W2971060441 @default.
- W3106670450 cites W2971373194 @default.
- W3106670450 cites W2972082796 @default.
- W3106670450 cites W2995023505 @default.
- W3106670450 cites W2995502771 @default.
- W3106670450 cites W2998709485 @default.
- W3106670450 cites W3001758897 @default.
- W3106670450 cites W3007086118 @default.
- W3106670450 cites W3009350425 @default.
- W3106670450 cites W3016224890 @default.
- W3106670450 cites W3016556330 @default.