Matches in SemOpenAlex for { <https://semopenalex.org/work/W3106681350> ?p ?o ?g. }
- W3106681350 endingPage "196" @default.
- W3106681350 startingPage "184" @default.
- W3106681350 abstract "ABSTRACT Objective Having shown promise in other medical fields, we sought to determine whether machine learning (ML) models perform better than usual care in diagnostic and prognostic prediction for emergency department (ED) patients. Methods In this systematic review, we searched MEDLINE, Embase, Central, and CINAHL from inception to October 17, 2019. We included studies comparing diagnostic and prognostic prediction of ED patients by ML models to usual care methods (triage‐based scores, clinical prediction tools, clinician judgment) using predictor variables readily available to ED clinicians. We extracted commonly reported performance metrics of model discrimination and classification. We used the PROBAST tool for risk of bias assessment (PROSPERO registration: CRD42020158129). Results The search yielded 1,656 unique records, of which 23 studies involving 16,274,647 patients were included. In all seven diagnostic studies, ML models outperformed usual care in all performance metrics. In six studies assessing in‐hospital mortality, the best‐performing ML models had better discrimination (area under the receiver operating characteristic curve [AUROC] =0.74–0.94) than any clinical decision tool (AUROC =0.68–0.81). In four studies assessing hospitalization, ML models had better discrimination (AUROC =0.80–0.83) than triage‐based scores (AUROC =0.68–0.82). Clinical heterogeneity precluded meta‐analysis. Most studies had high risk of bias due to lack of external validation, low event rates, and insufficient reporting of calibration. Conclusions Our review suggests that ML may have better prediction performance than usual care for ED patients with a variety of clinical presentations and outcomes. However, prediction model reporting guidelines should be followed to provide clinically applicable data. Interventional trials are needed to assess the impact of ML models on patient‐centered outcomes." @default.
- W3106681350 created "2020-12-07" @default.
- W3106681350 creator A5010045115 @default.
- W3106681350 creator A5047978665 @default.
- W3106681350 creator A5068345890 @default.
- W3106681350 creator A5073249579 @default.
- W3106681350 creator A5080441600 @default.
- W3106681350 date "2021-01-02" @default.
- W3106681350 modified "2023-10-12" @default.
- W3106681350 title "Machine Learning Versus Usual Care for Diagnostic and Prognostic Prediction in the Emergency Department: A Systematic Review" @default.
- W3106681350 cites W1966716734 @default.
- W3106681350 cites W1998392635 @default.
- W3106681350 cites W2010069697 @default.
- W3106681350 cites W2010615823 @default.
- W3106681350 cites W2015416871 @default.
- W3106681350 cites W2029598996 @default.
- W3106681350 cites W2039173155 @default.
- W3106681350 cites W2062884568 @default.
- W3106681350 cites W2077663753 @default.
- W3106681350 cites W2078271269 @default.
- W3106681350 cites W2085657320 @default.
- W3106681350 cites W2089689975 @default.
- W3106681350 cites W2139186101 @default.
- W3106681350 cites W2155116952 @default.
- W3106681350 cites W2171720415 @default.
- W3106681350 cites W2200122354 @default.
- W3106681350 cites W2282181907 @default.
- W3106681350 cites W2323525554 @default.
- W3106681350 cites W2570878489 @default.
- W3106681350 cites W2581082771 @default.
- W3106681350 cites W2582047306 @default.
- W3106681350 cites W2590906758 @default.
- W3106681350 cites W2752349109 @default.
- W3106681350 cites W2763556273 @default.
- W3106681350 cites W2770222727 @default.
- W3106681350 cites W2793609878 @default.
- W3106681350 cites W2810708119 @default.
- W3106681350 cites W2896538719 @default.
- W3106681350 cites W2907554860 @default.
- W3106681350 cites W2907638671 @default.
- W3106681350 cites W2910910290 @default.
- W3106681350 cites W2912754435 @default.
- W3106681350 cites W2913997948 @default.
- W3106681350 cites W2929110666 @default.
- W3106681350 cites W2934399013 @default.
- W3106681350 cites W2944798169 @default.
- W3106681350 cites W2976369463 @default.
- W3106681350 cites W2976398475 @default.
- W3106681350 cites W2987952249 @default.
- W3106681350 cites W2992764683 @default.
- W3106681350 cites W4294215472 @default.
- W3106681350 cites W639942055 @default.
- W3106681350 doi "https://doi.org/10.1111/acem.14190" @default.
- W3106681350 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33277724" @default.
- W3106681350 hasPublicationYear "2021" @default.
- W3106681350 type Work @default.
- W3106681350 sameAs 3106681350 @default.
- W3106681350 citedByCount "30" @default.
- W3106681350 countsByYear W31066813502021 @default.
- W3106681350 countsByYear W31066813502022 @default.
- W3106681350 countsByYear W31066813502023 @default.
- W3106681350 crossrefType "journal-article" @default.
- W3106681350 hasAuthorship W3106681350A5010045115 @default.
- W3106681350 hasAuthorship W3106681350A5047978665 @default.
- W3106681350 hasAuthorship W3106681350A5068345890 @default.
- W3106681350 hasAuthorship W3106681350A5073249579 @default.
- W3106681350 hasAuthorship W3106681350A5080441600 @default.
- W3106681350 hasBestOaLocation W31066813501 @default.
- W3106681350 hasConcept C118552586 @default.
- W3106681350 hasConcept C119857082 @default.
- W3106681350 hasConcept C126322002 @default.
- W3106681350 hasConcept C154945302 @default.
- W3106681350 hasConcept C17744445 @default.
- W3106681350 hasConcept C177713679 @default.
- W3106681350 hasConcept C194828623 @default.
- W3106681350 hasConcept C199539241 @default.
- W3106681350 hasConcept C27415008 @default.
- W3106681350 hasConcept C2777120189 @default.
- W3106681350 hasConcept C2779473830 @default.
- W3106681350 hasConcept C2780724011 @default.
- W3106681350 hasConcept C2781145037 @default.
- W3106681350 hasConcept C41008148 @default.
- W3106681350 hasConcept C45804977 @default.
- W3106681350 hasConcept C58471807 @default.
- W3106681350 hasConcept C71924100 @default.
- W3106681350 hasConcept C95190672 @default.
- W3106681350 hasConceptScore W3106681350C118552586 @default.
- W3106681350 hasConceptScore W3106681350C119857082 @default.
- W3106681350 hasConceptScore W3106681350C126322002 @default.
- W3106681350 hasConceptScore W3106681350C154945302 @default.
- W3106681350 hasConceptScore W3106681350C17744445 @default.
- W3106681350 hasConceptScore W3106681350C177713679 @default.
- W3106681350 hasConceptScore W3106681350C194828623 @default.
- W3106681350 hasConceptScore W3106681350C199539241 @default.
- W3106681350 hasConceptScore W3106681350C27415008 @default.
- W3106681350 hasConceptScore W3106681350C2777120189 @default.
- W3106681350 hasConceptScore W3106681350C2779473830 @default.
- W3106681350 hasConceptScore W3106681350C2780724011 @default.