Matches in SemOpenAlex for { <https://semopenalex.org/work/W3106723564> ?p ?o ?g. }
- W3106723564 endingPage "4030" @default.
- W3106723564 startingPage "4023" @default.
- W3106723564 abstract "Abstract Objectives To evaluate the performance of a novel convolutional neural network (CNN) for the classification of typical perifissural nodules (PFN). Methods Chest CT data from two centers in the UK and The Netherlands (1668 unique nodules, 1260 individuals) were collected. Pulmonary nodules were classified into subtypes, including “typical PFNs” on-site, and were reviewed by a central clinician. The dataset was divided into a training/cross-validation set of 1557 nodules (1103 individuals) and a test set of 196 nodules (158 individuals). For the test set, three radiologically trained readers classified the nodules into three nodule categories: typical PFN, atypical PFN, and non-PFN. The consensus of the three readers was used as reference to evaluate the performance of the PFN-CNN. Typical PFNs were considered as positive results, and atypical PFNs and non-PFNs were grouped as negative results. PFN-CNN performance was evaluated using the ROC curve, confusion matrix, and Cohen’s kappa. Results Internal validation yielded a mean AUC of 91.9% (95% CI 90.6–92.9) with 78.7% sensitivity and 90.4% specificity. For the test set, the reader consensus rated 45/196 (23%) of nodules as typical PFN. The classifier-reader agreement ( k = 0.62–0.75) was similar to the inter-reader agreement ( k = 0.64–0.79). Area under the ROC curve was 95.8% (95% CI 93.3–98.4), with a sensitivity of 95.6% (95% CI 84.9–99.5), and specificity of 88.1% (95% CI 81.8–92.8). Conclusion The PFN-CNN showed excellent performance in classifying typical PFNs. Its agreement with radiologically trained readers is within the range of inter-reader agreement. Thus, the CNN-based system has potential in clinical and screening settings to rule out perifissural nodules and increase reader efficiency. Key Points • Agreement between the PFN-CNN and radiologically trained readers is within the range of inter-reader agreement. • The CNN model for the classification of typical PFNs achieved an AUC of 95.8% (95% CI 93.3–98.4) with 95.6% (95% CI 84.9–99.5) sensitivity and 88.1% (95% CI 81.8–92.8) specificity compared to the consensus of three readers." @default.
- W3106723564 created "2020-12-07" @default.
- W3106723564 creator A5001567487 @default.
- W3106723564 creator A5005026444 @default.
- W3106723564 creator A5012401657 @default.
- W3106723564 creator A5024082845 @default.
- W3106723564 creator A5027567559 @default.
- W3106723564 creator A5041302318 @default.
- W3106723564 creator A5047528025 @default.
- W3106723564 creator A5056720851 @default.
- W3106723564 creator A5067501341 @default.
- W3106723564 creator A5071189596 @default.
- W3106723564 creator A5071445852 @default.
- W3106723564 creator A5077291039 @default.
- W3106723564 creator A5081872908 @default.
- W3106723564 date "2020-12-02" @default.
- W3106723564 modified "2023-09-27" @default.
- W3106723564 title "Evaluation of a novel deep learning–based classifier for perifissural nodules" @default.
- W3106723564 cites W130099911 @default.
- W3106723564 cites W1983114185 @default.
- W3106723564 cites W2081188695 @default.
- W3106723564 cites W2112467442 @default.
- W3106723564 cites W2120522095 @default.
- W3106723564 cites W2121023053 @default.
- W3106723564 cites W2268116731 @default.
- W3106723564 cites W2751696055 @default.
- W3106723564 cites W2755386144 @default.
- W3106723564 cites W2762546204 @default.
- W3106723564 cites W2809741033 @default.
- W3106723564 cites W2928271642 @default.
- W3106723564 cites W2979707822 @default.
- W3106723564 cites W3003415550 @default.
- W3106723564 cites W3010442991 @default.
- W3106723564 cites W3020045953 @default.
- W3106723564 cites W4294214983 @default.
- W3106723564 doi "https://doi.org/10.1007/s00330-020-07509-x" @default.
- W3106723564 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8128854" @default.
- W3106723564 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33269413" @default.
- W3106723564 hasPublicationYear "2020" @default.
- W3106723564 type Work @default.
- W3106723564 sameAs 3106723564 @default.
- W3106723564 citedByCount "0" @default.
- W3106723564 crossrefType "journal-article" @default.
- W3106723564 hasAuthorship W3106723564A5001567487 @default.
- W3106723564 hasAuthorship W3106723564A5005026444 @default.
- W3106723564 hasAuthorship W3106723564A5012401657 @default.
- W3106723564 hasAuthorship W3106723564A5024082845 @default.
- W3106723564 hasAuthorship W3106723564A5027567559 @default.
- W3106723564 hasAuthorship W3106723564A5041302318 @default.
- W3106723564 hasAuthorship W3106723564A5047528025 @default.
- W3106723564 hasAuthorship W3106723564A5056720851 @default.
- W3106723564 hasAuthorship W3106723564A5067501341 @default.
- W3106723564 hasAuthorship W3106723564A5071189596 @default.
- W3106723564 hasAuthorship W3106723564A5071445852 @default.
- W3106723564 hasAuthorship W3106723564A5077291039 @default.
- W3106723564 hasAuthorship W3106723564A5081872908 @default.
- W3106723564 hasBestOaLocation W31067235641 @default.
- W3106723564 hasConcept C11171543 @default.
- W3106723564 hasConcept C118552586 @default.
- W3106723564 hasConcept C126322002 @default.
- W3106723564 hasConcept C126838900 @default.
- W3106723564 hasConcept C138602881 @default.
- W3106723564 hasConcept C151730666 @default.
- W3106723564 hasConcept C154945302 @default.
- W3106723564 hasConcept C15744967 @default.
- W3106723564 hasConcept C16568411 @default.
- W3106723564 hasConcept C169903167 @default.
- W3106723564 hasConcept C2524010 @default.
- W3106723564 hasConcept C2776731575 @default.
- W3106723564 hasConcept C2778724333 @default.
- W3106723564 hasConcept C2779889316 @default.
- W3106723564 hasConcept C2781140086 @default.
- W3106723564 hasConcept C2989005 @default.
- W3106723564 hasConcept C33923547 @default.
- W3106723564 hasConcept C41008148 @default.
- W3106723564 hasConcept C58471807 @default.
- W3106723564 hasConcept C71924100 @default.
- W3106723564 hasConcept C81363708 @default.
- W3106723564 hasConcept C86803240 @default.
- W3106723564 hasConcept C95623464 @default.
- W3106723564 hasConceptScore W3106723564C11171543 @default.
- W3106723564 hasConceptScore W3106723564C118552586 @default.
- W3106723564 hasConceptScore W3106723564C126322002 @default.
- W3106723564 hasConceptScore W3106723564C126838900 @default.
- W3106723564 hasConceptScore W3106723564C138602881 @default.
- W3106723564 hasConceptScore W3106723564C151730666 @default.
- W3106723564 hasConceptScore W3106723564C154945302 @default.
- W3106723564 hasConceptScore W3106723564C15744967 @default.
- W3106723564 hasConceptScore W3106723564C16568411 @default.
- W3106723564 hasConceptScore W3106723564C169903167 @default.
- W3106723564 hasConceptScore W3106723564C2524010 @default.
- W3106723564 hasConceptScore W3106723564C2776731575 @default.
- W3106723564 hasConceptScore W3106723564C2778724333 @default.
- W3106723564 hasConceptScore W3106723564C2779889316 @default.
- W3106723564 hasConceptScore W3106723564C2781140086 @default.
- W3106723564 hasConceptScore W3106723564C2989005 @default.
- W3106723564 hasConceptScore W3106723564C33923547 @default.
- W3106723564 hasConceptScore W3106723564C41008148 @default.