Matches in SemOpenAlex for { <https://semopenalex.org/work/W3106751350> ?p ?o ?g. }
- W3106751350 abstract "Abstract. Precipitation orographic enhancement depends on both synoptic circulation and topography. Since high-elevation headwaters are often sparsely instrumented, the magnitude and distribution of this enhancement remain poorly understood. Filling this knowledge gap would allow a significant step ahead for hydrologic-forecasting procedures and water management in general. Here, we hypothesized that spatially distributed, manual measurements of snow depth (courses) could provide new insights into this process. We leveraged 11,000+ snow-course data upstream two reservoirs in the Western European Alps (Aosta Valley, Italy) to estimate precipitation orographic enhancement in the form of lapse rates and consequently improve predictions of a snow-hydrologic modeling chain (Flood-PROOFS). We found that Snow Water Equivalent (SWE) above 3000 m ASL was between 2 and 8.5 times higher than recorded cumulative seasonal precipitation below 1000 m ASL, with gradients up to 1000 mm w.e. km−1. Enhancement factors estimated by blending precipitation-gauge and snow-course data were quite consistent between the two hydropower headwaters (median values above 3000 m ASL between 4.1 and 4.8). Including blended gauge-course lapse rates in an iterative precipitation-spatialization procedure allowed Flood-PROOFS to remedy underestimations of both SWE above 3000 m ASL (up to 50 %) and importantly precipitation vs. observed streamflow. Runoff coefficients based on blended lapse rates were also more consistent from year to year that those based on precipitation gauges alone (standard deviation of 0.06 and 0.19, respectively). Thus, snow courses bear a characteristic signature of orographic precipitation, which opens a window of opportunity for leveraging these data sets to improve our understanding of the mountain water budget. This is all the more important due to their essential role in supporting water security and ecosystem services worldwide." @default.
- W3106751350 created "2020-12-07" @default.
- W3106751350 creator A5005128326 @default.
- W3106751350 creator A5013087919 @default.
- W3106751350 creator A5020554959 @default.
- W3106751350 creator A5022289359 @default.
- W3106751350 creator A5024148305 @default.
- W3106751350 creator A5029545993 @default.
- W3106751350 creator A5037028553 @default.
- W3106751350 creator A5049883148 @default.
- W3106751350 creator A5053362105 @default.
- W3106751350 creator A5061719695 @default.
- W3106751350 creator A5083901603 @default.
- W3106751350 date "2020-11-26" @default.
- W3106751350 modified "2023-10-18" @default.
- W3106751350 title "Learning about precipitation orographic enhancement from snow-course data improves water-balance modeling" @default.
- W3106751350 cites W1456776789 @default.
- W3106751350 cites W1752626349 @default.
- W3106751350 cites W1826495698 @default.
- W3106751350 cites W1953468016 @default.
- W3106751350 cites W1966334841 @default.
- W3106751350 cites W1977220632 @default.
- W3106751350 cites W2007620536 @default.
- W3106751350 cites W2008935173 @default.
- W3106751350 cites W2038103182 @default.
- W3106751350 cites W2046433430 @default.
- W3106751350 cites W2053026343 @default.
- W3106751350 cites W2074497745 @default.
- W3106751350 cites W2089096520 @default.
- W3106751350 cites W2094051575 @default.
- W3106751350 cites W2099184631 @default.
- W3106751350 cites W2124969601 @default.
- W3106751350 cites W2127017608 @default.
- W3106751350 cites W2172961379 @default.
- W3106751350 cites W2240059632 @default.
- W3106751350 cites W2334599789 @default.
- W3106751350 cites W2346874297 @default.
- W3106751350 cites W2461301683 @default.
- W3106751350 cites W2518002911 @default.
- W3106751350 cites W2598877543 @default.
- W3106751350 cites W2738550157 @default.
- W3106751350 cites W2767325523 @default.
- W3106751350 cites W2943522074 @default.
- W3106751350 cites W2979460632 @default.
- W3106751350 cites W2996490416 @default.
- W3106751350 cites W3005493753 @default.
- W3106751350 cites W3018815377 @default.
- W3106751350 cites W3091784922 @default.
- W3106751350 cites W3124745367 @default.
- W3106751350 doi "https://doi.org/10.5194/hess-2020-571" @default.
- W3106751350 hasPublicationYear "2020" @default.
- W3106751350 type Work @default.
- W3106751350 sameAs 3106751350 @default.
- W3106751350 citedByCount "0" @default.
- W3106751350 crossrefType "posted-content" @default.
- W3106751350 hasAuthorship W3106751350A5005128326 @default.
- W3106751350 hasAuthorship W3106751350A5013087919 @default.
- W3106751350 hasAuthorship W3106751350A5020554959 @default.
- W3106751350 hasAuthorship W3106751350A5022289359 @default.
- W3106751350 hasAuthorship W3106751350A5024148305 @default.
- W3106751350 hasAuthorship W3106751350A5029545993 @default.
- W3106751350 hasAuthorship W3106751350A5037028553 @default.
- W3106751350 hasAuthorship W3106751350A5049883148 @default.
- W3106751350 hasAuthorship W3106751350A5053362105 @default.
- W3106751350 hasAuthorship W3106751350A5061719695 @default.
- W3106751350 hasAuthorship W3106751350A5083901603 @default.
- W3106751350 hasBestOaLocation W31067513502 @default.
- W3106751350 hasConcept C107054158 @default.
- W3106751350 hasConcept C120961793 @default.
- W3106751350 hasConcept C127313418 @default.
- W3106751350 hasConcept C134295995 @default.
- W3106751350 hasConcept C153294291 @default.
- W3106751350 hasConcept C166957645 @default.
- W3106751350 hasConcept C187320778 @default.
- W3106751350 hasConcept C18903297 @default.
- W3106751350 hasConcept C194507410 @default.
- W3106751350 hasConcept C197046000 @default.
- W3106751350 hasConcept C205649164 @default.
- W3106751350 hasConcept C3018601724 @default.
- W3106751350 hasConcept C39432304 @default.
- W3106751350 hasConcept C49204034 @default.
- W3106751350 hasConcept C50477045 @default.
- W3106751350 hasConcept C66465714 @default.
- W3106751350 hasConcept C74256435 @default.
- W3106751350 hasConcept C76886044 @default.
- W3106751350 hasConcept C86803240 @default.
- W3106751350 hasConceptScore W3106751350C107054158 @default.
- W3106751350 hasConceptScore W3106751350C120961793 @default.
- W3106751350 hasConceptScore W3106751350C127313418 @default.
- W3106751350 hasConceptScore W3106751350C134295995 @default.
- W3106751350 hasConceptScore W3106751350C153294291 @default.
- W3106751350 hasConceptScore W3106751350C166957645 @default.
- W3106751350 hasConceptScore W3106751350C187320778 @default.
- W3106751350 hasConceptScore W3106751350C18903297 @default.
- W3106751350 hasConceptScore W3106751350C194507410 @default.
- W3106751350 hasConceptScore W3106751350C197046000 @default.
- W3106751350 hasConceptScore W3106751350C205649164 @default.
- W3106751350 hasConceptScore W3106751350C3018601724 @default.
- W3106751350 hasConceptScore W3106751350C39432304 @default.
- W3106751350 hasConceptScore W3106751350C49204034 @default.