Matches in SemOpenAlex for { <https://semopenalex.org/work/W3106753542> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3106753542 endingPage "101832" @default.
- W3106753542 startingPage "101832" @default.
- W3106753542 abstract "Pathologists analyze biopsy material at both the cellular and structural level to determine diagnosis and cancer stage. Mitotic figures are surrogate biomarkers of cellular proliferation that can provide prognostic information; thus, their precise detection is an important factor for clinical care. Convolutional Neural Networks (CNNs) have shown remarkable performance on several recognition tasks. Utilizing CNNs for mitosis classification may aid pathologists to improve the detection accuracy.We studied two state-of-the-art CNN-based models, ESPNet and DenseNet, for mitosis classification on six whole slide images of skin biopsies and compared their quantitative performance in terms of sensitivity, specificity, and F-score. We used raw RGB images of mitosis and non-mitosis samples with their corresponding labels as training input. In order to compare with other work, we studied the performance of these classifiers and two other architectures, ResNet and ShuffleNet, on the publicly available MITOS breast biopsy dataset and compared the performance of all four in terms of precision, recall, and F-score (which are standard for this data set), architecture, training time and inference time.The ESPNet and DenseNet results on our primary melanoma dataset had a sensitivity of 0.976 and 0.968, and a specificity of 0.987 and 0.995, respectively, with F-scores of .968 and .976, respectively. On the MITOS dataset, ESPNet and DenseNet showed a sensitivity of 0.866 and 0.916, and a specificity of 0.973 and 0.980, respectively. The MITOS results using DenseNet had a precision of 0.939, recall of 0.916, and F-score of 0.927. The best published result on MITOS (Saha et al. 2018) reported precision of 0.92, recall of 0.88, and F-score of 0.90. In our architecture comparisons on MITOS, we found that DenseNet beats the others in terms of F-Score (DenseNet 0.927, ESPNet 0.890, ResNet 0.865, ShuffleNet 0.847) and especially Recall (DenseNet 0.916, ESPNet 0.866, ResNet 0.807, ShuffleNet 0.753), while ResNet and ESPNet have much faster inference times (ResNet 6 s, ESPNet 8 s, DenseNet 31 s). ResNet is faster than ESPNet, but ESPNet has a higher F-Score and Recall than ResNet, making it a good compromise solution.We studied several state-of-the-art CNNs for detecting mitotic figures in whole slide biopsy images. We evaluated two CNNs on a melanoma cancer dataset and then compared four CNNs on a public breast cancer data set, using the same methodology on both. Our methodology and architecture for mitosis finding in both melanoma and breast cancer whole slide images has been thoroughly tested and is likely to be useful for finding mitoses in any whole slide biopsy images." @default.
- W3106753542 created "2020-12-07" @default.
- W3106753542 creator A5010427214 @default.
- W3106753542 creator A5017523626 @default.
- W3106753542 creator A5031682567 @default.
- W3106753542 creator A5039775778 @default.
- W3106753542 creator A5040878044 @default.
- W3106753542 creator A5051931375 @default.
- W3106753542 creator A5066330260 @default.
- W3106753542 creator A5074132108 @default.
- W3106753542 creator A5076121553 @default.
- W3106753542 date "2021-01-01" @default.
- W3106753542 modified "2023-10-14" @default.
- W3106753542 title "Machine learning techniques for mitoses classification" @default.
- W3106753542 cites W2027887863 @default.
- W3106753542 cites W2076787230 @default.
- W3106753542 cites W2110431315 @default.
- W3106753542 cites W2122394460 @default.
- W3106753542 cites W2132031490 @default.
- W3106753542 cites W2132083787 @default.
- W3106753542 cites W2148309496 @default.
- W3106753542 cites W2560920277 @default.
- W3106753542 cites W2581082771 @default.
- W3106753542 cites W2732701910 @default.
- W3106753542 cites W2755355237 @default.
- W3106753542 cites W2766877747 @default.
- W3106753542 cites W2771248105 @default.
- W3106753542 cites W2788633781 @default.
- W3106753542 cites W2789755511 @default.
- W3106753542 cites W2964189045 @default.
- W3106753542 cites W2967127264 @default.
- W3106753542 doi "https://doi.org/10.1016/j.compmedimag.2020.101832" @default.
- W3106753542 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7855641" @default.
- W3106753542 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33302246" @default.
- W3106753542 hasPublicationYear "2021" @default.
- W3106753542 type Work @default.
- W3106753542 sameAs 3106753542 @default.
- W3106753542 citedByCount "17" @default.
- W3106753542 countsByYear W31067535422021 @default.
- W3106753542 countsByYear W31067535422022 @default.
- W3106753542 countsByYear W31067535422023 @default.
- W3106753542 crossrefType "journal-article" @default.
- W3106753542 hasAuthorship W3106753542A5010427214 @default.
- W3106753542 hasAuthorship W3106753542A5017523626 @default.
- W3106753542 hasAuthorship W3106753542A5031682567 @default.
- W3106753542 hasAuthorship W3106753542A5039775778 @default.
- W3106753542 hasAuthorship W3106753542A5040878044 @default.
- W3106753542 hasAuthorship W3106753542A5051931375 @default.
- W3106753542 hasAuthorship W3106753542A5066330260 @default.
- W3106753542 hasAuthorship W3106753542A5074132108 @default.
- W3106753542 hasAuthorship W3106753542A5076121553 @default.
- W3106753542 hasConcept C119857082 @default.
- W3106753542 hasConcept C153180895 @default.
- W3106753542 hasConcept C154945302 @default.
- W3106753542 hasConcept C41008148 @default.
- W3106753542 hasConcept C81363708 @default.
- W3106753542 hasConceptScore W3106753542C119857082 @default.
- W3106753542 hasConceptScore W3106753542C153180895 @default.
- W3106753542 hasConceptScore W3106753542C154945302 @default.
- W3106753542 hasConceptScore W3106753542C41008148 @default.
- W3106753542 hasConceptScore W3106753542C81363708 @default.
- W3106753542 hasFunder F4320332161 @default.
- W3106753542 hasLocation W31067535421 @default.
- W3106753542 hasLocation W31067535422 @default.
- W3106753542 hasOpenAccess W3106753542 @default.
- W3106753542 hasPrimaryLocation W31067535421 @default.
- W3106753542 hasRelatedWork W2175746458 @default.
- W3106753542 hasRelatedWork W2613736958 @default.
- W3106753542 hasRelatedWork W2732542196 @default.
- W3106753542 hasRelatedWork W2738221750 @default.
- W3106753542 hasRelatedWork W2760085659 @default.
- W3106753542 hasRelatedWork W2883200793 @default.
- W3106753542 hasRelatedWork W3012978760 @default.
- W3106753542 hasRelatedWork W3027997911 @default.
- W3106753542 hasRelatedWork W3093612317 @default.
- W3106753542 hasRelatedWork W4287776258 @default.
- W3106753542 hasVolume "87" @default.
- W3106753542 isParatext "false" @default.
- W3106753542 isRetracted "false" @default.
- W3106753542 magId "3106753542" @default.
- W3106753542 workType "article" @default.