Matches in SemOpenAlex for { <https://semopenalex.org/work/W3106754524> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W3106754524 endingPage "012023" @default.
- W3106754524 startingPage "012023" @default.
- W3106754524 abstract "Abstract The intrusion detection system is an important component that performs the analysis for. the problem arising from the IDS is a collection of data sets in a computer network. to increase the high level and low false positive level of approach with the learning machine in applied. The data mining algorithm used is Naïve bayes one of the most widely used algorithms in space due to its simplicity, efficiency and effectiveness. NB has high accuracy and speed when applied into the database with large data. However, the NB algorithm assumes independent attributes (free) and is very sensitive to the selection of many features that interfere with the performance or accuracy of the NB to be low but in practice, the possibilities of the feature are interrelated. The Feature Dependent Naïve Bayes (FDNB) method is an effective method used to solve existing problems in NB by computing features as pairs and creating dependencies between each other as well as by applying learning models implemented to cross-validation, Feature Selection and data steps preprocessing that gives better accuracy results. After testing with two models of Naïve bayes and FDNB, the results obtained from the Naïve Bayes algorithm resulted in an accuracy of 84.42%, while for FDNB and oversampling (CFS + GS) the accuracy was 94.58%, FDNB and oversampling (CFS + BFS) the accuracy value of 94.69%, FDNB and SMOTE (CFS + GS) and FDNB and SMOTE (CFS + BFS) has an accuracy value of 93.27%. For the average per attack type DOS attack shows the highest result for its accuracy value of 97.86% and U2R attack produces the best accuracy when classifying U2R with 93.80% accuracy, U-F size of 96.26% U2R can be considered as a very result nice. Because U2R attack is considered very dangerous." @default.
- W3106754524 created "2020-12-07" @default.
- W3106754524 creator A5003522645 @default.
- W3106754524 creator A5013875866 @default.
- W3106754524 creator A5048180390 @default.
- W3106754524 creator A5054625715 @default.
- W3106754524 creator A5063468380 @default.
- W3106754524 date "2020-11-01" @default.
- W3106754524 modified "2023-09-23" @default.
- W3106754524 title "Feature Dependent Naïve Bayes For Network Intrusion Detection System" @default.
- W3106754524 cites W2023061740 @default.
- W3106754524 cites W2066628421 @default.
- W3106754524 cites W2084496302 @default.
- W3106754524 cites W2617227509 @default.
- W3106754524 doi "https://doi.org/10.1088/1742-6596/1641/1/012023" @default.
- W3106754524 hasPublicationYear "2020" @default.
- W3106754524 type Work @default.
- W3106754524 sameAs 3106754524 @default.
- W3106754524 citedByCount "1" @default.
- W3106754524 countsByYear W31067545242023 @default.
- W3106754524 crossrefType "journal-article" @default.
- W3106754524 hasAuthorship W3106754524A5003522645 @default.
- W3106754524 hasAuthorship W3106754524A5013875866 @default.
- W3106754524 hasAuthorship W3106754524A5048180390 @default.
- W3106754524 hasAuthorship W3106754524A5054625715 @default.
- W3106754524 hasAuthorship W3106754524A5063468380 @default.
- W3106754524 hasBestOaLocation W31067545241 @default.
- W3106754524 hasConcept C107673813 @default.
- W3106754524 hasConcept C12267149 @default.
- W3106754524 hasConcept C124101348 @default.
- W3106754524 hasConcept C138885662 @default.
- W3106754524 hasConcept C153180895 @default.
- W3106754524 hasConcept C154945302 @default.
- W3106754524 hasConcept C207201462 @default.
- W3106754524 hasConcept C2776401178 @default.
- W3106754524 hasConcept C35525427 @default.
- W3106754524 hasConcept C41008148 @default.
- W3106754524 hasConcept C41895202 @default.
- W3106754524 hasConcept C52001869 @default.
- W3106754524 hasConceptScore W3106754524C107673813 @default.
- W3106754524 hasConceptScore W3106754524C12267149 @default.
- W3106754524 hasConceptScore W3106754524C124101348 @default.
- W3106754524 hasConceptScore W3106754524C138885662 @default.
- W3106754524 hasConceptScore W3106754524C153180895 @default.
- W3106754524 hasConceptScore W3106754524C154945302 @default.
- W3106754524 hasConceptScore W3106754524C207201462 @default.
- W3106754524 hasConceptScore W3106754524C2776401178 @default.
- W3106754524 hasConceptScore W3106754524C35525427 @default.
- W3106754524 hasConceptScore W3106754524C41008148 @default.
- W3106754524 hasConceptScore W3106754524C41895202 @default.
- W3106754524 hasConceptScore W3106754524C52001869 @default.
- W3106754524 hasIssue "1" @default.
- W3106754524 hasLocation W31067545241 @default.
- W3106754524 hasOpenAccess W3106754524 @default.
- W3106754524 hasPrimaryLocation W31067545241 @default.
- W3106754524 hasRelatedWork W13187899 @default.
- W3106754524 hasRelatedWork W13435086 @default.
- W3106754524 hasRelatedWork W13625503 @default.
- W3106754524 hasRelatedWork W2777878 @default.
- W3106754524 hasRelatedWork W3471726 @default.
- W3106754524 hasRelatedWork W5410279 @default.
- W3106754524 hasRelatedWork W6638451 @default.
- W3106754524 hasRelatedWork W7524428 @default.
- W3106754524 hasRelatedWork W8261557 @default.
- W3106754524 hasRelatedWork W9958333 @default.
- W3106754524 hasVolume "1641" @default.
- W3106754524 isParatext "false" @default.
- W3106754524 isRetracted "false" @default.
- W3106754524 magId "3106754524" @default.
- W3106754524 workType "article" @default.