Matches in SemOpenAlex for { <https://semopenalex.org/work/W3106763172> ?p ?o ?g. }
- W3106763172 abstract "COVID-19 or 2019-nCoV is no longer pandemic but rather endemic, with more than 651,247 people around world having lost their lives after contracting the disease. Currently, there is no specific treatment or cure for COVID-19, and thus living with the disease and its symptoms is inevitable. This reality has placed a massive burden on limited healthcare systems worldwide especially in the developing nations. Although neither an effective, clinically proven antiviral agents' strategy nor an approved vaccine exist to eradicate the COVID-19 pandemic, there are alternatives that may reduce the huge burden on not only limited healthcare systems but also the economic sector; the most promising include harnessing non-clinical techniques such as machine learning, data mining, deep learning and other artificial intelligence. These alternatives would facilitate diagnosis and prognosis for 2019-nCoV pandemic patients. Supervised machine learning models for COVID-19 infection were developed in this work with learning algorithms which include logistic regression, decision tree, support vector machine, naive Bayes, and artificial neutral network using epidemiology labeled dataset for positive and negative COVID-19 cases of Mexico. The correlation coefficient analysis between various dependent and independent features was carried out to determine a strength relationship between each dependent feature and independent feature of the dataset prior to developing the models. The 80% of the training dataset were used for training the models while the remaining 20% were used for testing the models. The result of the performance evaluation of the models showed that decision tree model has the highest accuracy of 94.99% while the Support Vector Machine Model has the highest sensitivity of 93.34% and Naïve Bayes Model has the highest specificity of 94.30%." @default.
- W3106763172 created "2020-12-07" @default.
- W3106763172 creator A5002436802 @default.
- W3106763172 creator A5011243761 @default.
- W3106763172 creator A5019210023 @default.
- W3106763172 creator A5037374393 @default.
- W3106763172 creator A5047309948 @default.
- W3106763172 creator A5074211987 @default.
- W3106763172 date "2020-11-27" @default.
- W3106763172 modified "2023-10-14" @default.
- W3106763172 title "Supervised Machine Learning Models for Prediction of COVID-19 Infection using Epidemiology Dataset" @default.
- W3106763172 cites W1968452917 @default.
- W3106763172 cites W2008056655 @default.
- W3106763172 cites W2104787607 @default.
- W3106763172 cites W2111072639 @default.
- W3106763172 cites W2504838139 @default.
- W3106763172 cites W2596210099 @default.
- W3106763172 cites W2783880833 @default.
- W3106763172 cites W2800634251 @default.
- W3106763172 cites W2901779613 @default.
- W3106763172 cites W2906126865 @default.
- W3106763172 cites W2908052263 @default.
- W3106763172 cites W2921630034 @default.
- W3106763172 cites W2998732610 @default.
- W3106763172 cites W3000813221 @default.
- W3106763172 cites W3001118548 @default.
- W3106763172 cites W3001211201 @default.
- W3106763172 cites W3002812395 @default.
- W3106763172 cites W3008299510 @default.
- W3106763172 cites W3008554056 @default.
- W3106763172 cites W3009828946 @default.
- W3106763172 cites W3009876049 @default.
- W3106763172 cites W3012054129 @default.
- W3106763172 cites W3012308747 @default.
- W3106763172 cites W3013056994 @default.
- W3106763172 cites W3014524604 @default.
- W3106763172 cites W3015462573 @default.
- W3106763172 cites W3015919348 @default.
- W3106763172 cites W3019119825 @default.
- W3106763172 cites W3030419021 @default.
- W3106763172 cites W3036259678 @default.
- W3106763172 cites W3040508291 @default.
- W3106763172 cites W3043554691 @default.
- W3106763172 cites W3045445851 @default.
- W3106763172 cites W3090982825 @default.
- W3106763172 cites W3135813019 @default.
- W3106763172 cites W3162351260 @default.
- W3106763172 cites W3165656738 @default.
- W3106763172 cites W4250044239 @default.
- W3106763172 doi "https://doi.org/10.1007/s42979-020-00394-7" @default.
- W3106763172 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7694891" @default.
- W3106763172 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33263111" @default.
- W3106763172 hasPublicationYear "2020" @default.
- W3106763172 type Work @default.
- W3106763172 sameAs 3106763172 @default.
- W3106763172 citedByCount "166" @default.
- W3106763172 countsByYear W31067631722021 @default.
- W3106763172 countsByYear W31067631722022 @default.
- W3106763172 countsByYear W31067631722023 @default.
- W3106763172 crossrefType "journal-article" @default.
- W3106763172 hasAuthorship W3106763172A5002436802 @default.
- W3106763172 hasAuthorship W3106763172A5011243761 @default.
- W3106763172 hasAuthorship W3106763172A5019210023 @default.
- W3106763172 hasAuthorship W3106763172A5037374393 @default.
- W3106763172 hasAuthorship W3106763172A5047309948 @default.
- W3106763172 hasAuthorship W3106763172A5074211987 @default.
- W3106763172 hasBestOaLocation W31067631721 @default.
- W3106763172 hasConcept C107130276 @default.
- W3106763172 hasConcept C107673813 @default.
- W3106763172 hasConcept C119857082 @default.
- W3106763172 hasConcept C12267149 @default.
- W3106763172 hasConcept C126322002 @default.
- W3106763172 hasConcept C136389625 @default.
- W3106763172 hasConcept C138885662 @default.
- W3106763172 hasConcept C142724271 @default.
- W3106763172 hasConcept C151956035 @default.
- W3106763172 hasConcept C154945302 @default.
- W3106763172 hasConcept C207201462 @default.
- W3106763172 hasConcept C2776401178 @default.
- W3106763172 hasConcept C2779134260 @default.
- W3106763172 hasConcept C3008058167 @default.
- W3106763172 hasConcept C41008148 @default.
- W3106763172 hasConcept C41895202 @default.
- W3106763172 hasConcept C45804977 @default.
- W3106763172 hasConcept C50644808 @default.
- W3106763172 hasConcept C52001869 @default.
- W3106763172 hasConcept C524204448 @default.
- W3106763172 hasConcept C71924100 @default.
- W3106763172 hasConcept C84525736 @default.
- W3106763172 hasConcept C89623803 @default.
- W3106763172 hasConceptScore W3106763172C107130276 @default.
- W3106763172 hasConceptScore W3106763172C107673813 @default.
- W3106763172 hasConceptScore W3106763172C119857082 @default.
- W3106763172 hasConceptScore W3106763172C12267149 @default.
- W3106763172 hasConceptScore W3106763172C126322002 @default.
- W3106763172 hasConceptScore W3106763172C136389625 @default.
- W3106763172 hasConceptScore W3106763172C138885662 @default.
- W3106763172 hasConceptScore W3106763172C142724271 @default.
- W3106763172 hasConceptScore W3106763172C151956035 @default.
- W3106763172 hasConceptScore W3106763172C154945302 @default.