Matches in SemOpenAlex for { <https://semopenalex.org/work/W3106765303> ?p ?o ?g. }
- W3106765303 endingPage "996" @default.
- W3106765303 startingPage "982" @default.
- W3106765303 abstract "It is significant for restoration and protection of natural resources and ecological services in coastal wetlands to map different land cover types with satellite remote sensing data. Considering difficulties of wetland species classification, hyperspectral images (HSIs) with high spectral resolution and multispectral images (MSI) with high spatial resolution are considered to achieve complementary advantages of multisource data. An effective approach, named as multistream convolutional neural network, is proposed to achieve fine classification of coastal wetlands. First, regression processing is adopted to make chaotically scattered coastal wetland data more compact and different. Second, through appropriate feature extraction and feature fusion strategies, high-level information of multisource data in regression domain is fused to distinguish different land cover. Experiments on GF-5 HSIs and Sentinel-2 MSIs are carried out in order to validate the classification performance of the proposed approach in two coastal wetlands of research value in China, i.e., Yellow River Estuary and Yancheng coastal wetland. Experimental results demonstrate the effectiveness of the proposed method compared with the state-of-the-art methods in the field, especially when the number of sample size is extremely small." @default.
- W3106765303 created "2020-12-07" @default.
- W3106765303 creator A5000432967 @default.
- W3106765303 creator A5022256556 @default.
- W3106765303 creator A5033017179 @default.
- W3106765303 creator A5035567655 @default.
- W3106765303 creator A5050009113 @default.
- W3106765303 creator A5067803447 @default.
- W3106765303 date "2021-01-01" @default.
- W3106765303 modified "2023-10-16" @default.
- W3106765303 title "Joint Classification of Hyperspectral and Multispectral Images for Mapping Coastal Wetlands" @default.
- W3106765303 cites W1602811519 @default.
- W3106765303 cites W1610015390 @default.
- W3106765303 cites W1971637299 @default.
- W3106765303 cites W1979158807 @default.
- W3106765303 cites W1998515817 @default.
- W3106765303 cites W2015258183 @default.
- W3106765303 cites W2027915408 @default.
- W3106765303 cites W2053615857 @default.
- W3106765303 cites W2059446377 @default.
- W3106765303 cites W2072677073 @default.
- W3106765303 cites W2079558799 @default.
- W3106765303 cites W2080111997 @default.
- W3106765303 cites W2092869901 @default.
- W3106765303 cites W2097486709 @default.
- W3106765303 cites W2119060021 @default.
- W3106765303 cites W2152057649 @default.
- W3106765303 cites W2171421219 @default.
- W3106765303 cites W2238226927 @default.
- W3106765303 cites W2314785379 @default.
- W3106765303 cites W2336879049 @default.
- W3106765303 cites W2346650846 @default.
- W3106765303 cites W2500751094 @default.
- W3106765303 cites W2519307493 @default.
- W3106765303 cites W2602548474 @default.
- W3106765303 cites W2603392361 @default.
- W3106765303 cites W2613180894 @default.
- W3106765303 cites W2728562011 @default.
- W3106765303 cites W2765739551 @default.
- W3106765303 cites W2766550705 @default.
- W3106765303 cites W2766689160 @default.
- W3106765303 cites W2791306819 @default.
- W3106765303 cites W2793357412 @default.
- W3106765303 cites W2794055043 @default.
- W3106765303 cites W2794208501 @default.
- W3106765303 cites W2800371750 @default.
- W3106765303 cites W2801217959 @default.
- W3106765303 cites W2884352191 @default.
- W3106765303 cites W2890523706 @default.
- W3106765303 cites W2903350886 @default.
- W3106765303 cites W2910136527 @default.
- W3106765303 cites W2940874045 @default.
- W3106765303 cites W2950326544 @default.
- W3106765303 cites W2969375592 @default.
- W3106765303 cites W2969816830 @default.
- W3106765303 cites W2971007343 @default.
- W3106765303 cites W2971539270 @default.
- W3106765303 cites W2975225574 @default.
- W3106765303 cites W2998142089 @default.
- W3106765303 cites W3005698624 @default.
- W3106765303 cites W3014053269 @default.
- W3106765303 cites W3016244469 @default.
- W3106765303 cites W3037587714 @default.
- W3106765303 cites W3041024848 @default.
- W3106765303 cites W3047389872 @default.
- W3106765303 cites W3047443805 @default.
- W3106765303 cites W3048631361 @default.
- W3106765303 cites W3103753223 @default.
- W3106765303 cites W3104313739 @default.
- W3106765303 cites W616251045 @default.
- W3106765303 doi "https://doi.org/10.1109/jstars.2020.3040305" @default.
- W3106765303 hasPublicationYear "2021" @default.
- W3106765303 type Work @default.
- W3106765303 sameAs 3106765303 @default.
- W3106765303 citedByCount "17" @default.
- W3106765303 countsByYear W31067653032021 @default.
- W3106765303 countsByYear W31067653032022 @default.
- W3106765303 countsByYear W31067653032023 @default.
- W3106765303 crossrefType "journal-article" @default.
- W3106765303 hasAuthorship W3106765303A5000432967 @default.
- W3106765303 hasAuthorship W3106765303A5022256556 @default.
- W3106765303 hasAuthorship W3106765303A5033017179 @default.
- W3106765303 hasAuthorship W3106765303A5035567655 @default.
- W3106765303 hasAuthorship W3106765303A5050009113 @default.
- W3106765303 hasAuthorship W3106765303A5067803447 @default.
- W3106765303 hasBestOaLocation W31067653031 @default.
- W3106765303 hasConcept C127313418 @default.
- W3106765303 hasConcept C127413603 @default.
- W3106765303 hasConcept C159078339 @default.
- W3106765303 hasConcept C170154142 @default.
- W3106765303 hasConcept C173163844 @default.
- W3106765303 hasConcept C18555067 @default.
- W3106765303 hasConcept C18903297 @default.
- W3106765303 hasConcept C39432304 @default.
- W3106765303 hasConcept C41008148 @default.
- W3106765303 hasConcept C62649853 @default.
- W3106765303 hasConcept C67715294 @default.
- W3106765303 hasConcept C86803240 @default.