Matches in SemOpenAlex for { <https://semopenalex.org/work/W3106770139> ?p ?o ?g. }
- W3106770139 abstract "Phytochromes are plant photoreceptors that have long been associated with photomorphogenesis in plants; however, more recently, their crucial role in the regulation of variety of abiotic stresses has been explored. Chilling stress is one of the abiotic factors that severely affect growth, development, and productivity of crops. In the present work, we have analyzed and compared physiological, biochemical, and molecular responses in two contrasting phytochrome mutants of tomato, namely aurea (aur) and high pigment1 (hp1), along with wild-type cultivar Micro-Tom (MT) under chilling stress. In tomato, aur is phytochrome-deficient mutant while hp1 is a phytochrome-sensitive mutant. The genotype-specific physiological, biochemical, and molecular responses under chilling stress in tomato mutants strongly validated phytochrome-mediated regulation of abiotic stress.Here, we demonstrate that phytochrome-sensitive mutant hp1 show improved performance compared to phytochrome-deficient mutant aur and wild-type MT plants under chilling stress. Interestingly, we noticed significant increase in several photosynthetic-related parameters in hp1 under chilling stress that include photosynthetic rate, stomatal conductance, stomatal aperture, transpiration rate, chlorophyll a and carotenoids. Whereas most parameters were negatively affected in aur and MT except a slight increase in carotenoids in MT plants under chilling stress. Further, we found that PSII quantum efficiency (Fv/Fm), PSII operating efficiency (Fq'/Fm'), and non-photochemical quenching (NPQ) were all positively regulated in hp1, which demonstrate enhanced photosynthetic performance of hp1 under stress. On the other hand, Fv/Fm and Fq'/Fm' were decreased significantly in aur and wild-type plants. In addition, NPQ was not affected in MT but declined in aur mutant after chilling stress. Noticeably, the transcript analysis show that PHY genes which were previously reported to act as molecular switches in response to several abiotic stresses were mainly induced in hp1 and repressed in aur and MT in response to stress. As expected, we also found reduced levels of malondialdehyde (MDA), enhanced activities of antioxidant enzymes, and higher accumulation of protecting osmolytes (soluble sugars, proline, glycine betaine) which further elaborate the underlying tolerance mechanism of hp1 genotype under chilling stress.Our findings clearly demonstrate that phytochrome-sensitive and phytochrome-deficient tomato mutants respond differently under chilling stress thereby regulating physiological, biochemical, and molecular responses and thus establish a strong link between phytochromes and their role in stress tolerance." @default.
- W3106770139 created "2020-12-07" @default.
- W3106770139 creator A5002534790 @default.
- W3106770139 creator A5045729192 @default.
- W3106770139 creator A5052267876 @default.
- W3106770139 creator A5054226457 @default.
- W3106770139 creator A5057608898 @default.
- W3106770139 creator A5058002773 @default.
- W3106770139 creator A5070132539 @default.
- W3106770139 creator A5085887915 @default.
- W3106770139 creator A5077280225 @default.
- W3106770139 date "2020-11-27" @default.
- W3106770139 modified "2023-09-23" @default.
- W3106770139 title "Comparative analysis of two phytochrome mutants of tomato (Micro-Tom cv.) reveals specific physiological, biochemical, and molecular responses under chilling stress" @default.
- W3106770139 cites W1772575001 @default.
- W3106770139 cites W1799004006 @default.
- W3106770139 cites W1977905981 @default.
- W3106770139 cites W1985497007 @default.
- W3106770139 cites W2008077523 @default.
- W3106770139 cites W2025636704 @default.
- W3106770139 cites W2043127551 @default.
- W3106770139 cites W2043770563 @default.
- W3106770139 cites W2049168559 @default.
- W3106770139 cites W2069655106 @default.
- W3106770139 cites W2076055221 @default.
- W3106770139 cites W2077766806 @default.
- W3106770139 cites W2092890629 @default.
- W3106770139 cites W2107277218 @default.
- W3106770139 cites W2112395547 @default.
- W3106770139 cites W2123269610 @default.
- W3106770139 cites W2130470238 @default.
- W3106770139 cites W2141922055 @default.
- W3106770139 cites W2147728313 @default.
- W3106770139 cites W2155398489 @default.
- W3106770139 cites W2157959799 @default.
- W3106770139 cites W2192080449 @default.
- W3106770139 cites W2202769055 @default.
- W3106770139 cites W2314352133 @default.
- W3106770139 cites W2316530459 @default.
- W3106770139 cites W2399640379 @default.
- W3106770139 cites W2473995749 @default.
- W3106770139 cites W2512022690 @default.
- W3106770139 cites W2519210876 @default.
- W3106770139 cites W2566364370 @default.
- W3106770139 cites W2586205120 @default.
- W3106770139 cites W2612171985 @default.
- W3106770139 cites W2759003396 @default.
- W3106770139 cites W2781155153 @default.
- W3106770139 cites W2797182501 @default.
- W3106770139 cites W2808168982 @default.
- W3106770139 cites W2809811682 @default.
- W3106770139 cites W2892099445 @default.
- W3106770139 cites W2892870427 @default.
- W3106770139 cites W2899302777 @default.
- W3106770139 cites W2908735332 @default.
- W3106770139 cites W2912563496 @default.
- W3106770139 cites W2913180669 @default.
- W3106770139 cites W2914140188 @default.
- W3106770139 cites W2914954892 @default.
- W3106770139 cites W2940111917 @default.
- W3106770139 cites W2951959040 @default.
- W3106770139 cites W2972621784 @default.
- W3106770139 cites W2973792302 @default.
- W3106770139 cites W2988314595 @default.
- W3106770139 cites W2990081298 @default.
- W3106770139 cites W2990750879 @default.
- W3106770139 cites W2991189113 @default.
- W3106770139 cites W2993169071 @default.
- W3106770139 cites W2996665143 @default.
- W3106770139 cites W3011962099 @default.
- W3106770139 cites W3016752451 @default.
- W3106770139 cites W3034151767 @default.
- W3106770139 cites W371158841 @default.
- W3106770139 doi "https://doi.org/10.1186/s43141-020-00091-1" @default.
- W3106770139 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7695757" @default.
- W3106770139 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33245438" @default.
- W3106770139 hasPublicationYear "2020" @default.
- W3106770139 type Work @default.
- W3106770139 sameAs 3106770139 @default.
- W3106770139 citedByCount "8" @default.
- W3106770139 countsByYear W31067701392021 @default.
- W3106770139 countsByYear W31067701392022 @default.
- W3106770139 countsByYear W31067701392023 @default.
- W3106770139 crossrefType "journal-article" @default.
- W3106770139 hasAuthorship W3106770139A5002534790 @default.
- W3106770139 hasAuthorship W3106770139A5045729192 @default.
- W3106770139 hasAuthorship W3106770139A5052267876 @default.
- W3106770139 hasAuthorship W3106770139A5054226457 @default.
- W3106770139 hasAuthorship W3106770139A5057608898 @default.
- W3106770139 hasAuthorship W3106770139A5058002773 @default.
- W3106770139 hasAuthorship W3106770139A5070132539 @default.
- W3106770139 hasAuthorship W3106770139A5077280225 @default.
- W3106770139 hasAuthorship W3106770139A5085887915 @default.
- W3106770139 hasBestOaLocation W31067701391 @default.
- W3106770139 hasConcept C104317684 @default.
- W3106770139 hasConcept C132215390 @default.
- W3106770139 hasConcept C143065580 @default.
- W3106770139 hasConcept C146926016 @default.
- W3106770139 hasConcept C151730666 @default.
- W3106770139 hasConcept C161221295 @default.