Matches in SemOpenAlex for { <https://semopenalex.org/work/W3106937308> ?p ?o ?g. }
- W3106937308 endingPage "116104" @default.
- W3106937308 startingPage "116104" @default.
- W3106937308 abstract "Global urban planning has promoted green infrastructure (GI) such as street trees, shrubs or other greenspace in order to mitigate air pollution. Although considerable attention has been paid to understanding particulate matter (PM) deposition on GI, there has been little focus on identifying which leaf traits might maximise airborne PM removal. This paper examines existing literature to synthesize the state of knowledge on leaf traits most relevant to PM removal. We systematically reviewed measurement studies that evaluated particulate matter accumulated on leaves on street trees, shrubs green roofs, and green walls, for a variety of leaf traits. Our final selection included 62 papers, most from field studies and a handful from wind tunnel studies. The following were variously promoted as useful traits: coniferous needle leaves; small, rough and textured broadleaves; lanceolate and ovate shapes; waxy coatings, and high-density trichomes. Consideration of these leaf traits, many of which are also associated with drought tolerance, may help to maximise PM capture. Although effective leaf traits were identified, there is no strong or consistent evidence to identify which is the most influential leaf trait in capturing PM. The diversity in sampling methods, wide comparison groups and lack of background PM concentration measures in many studies limited our ability to synthesize results. We found that several ancillary factors contribute to variations in the accumulation of PM on leaves, thus cannot recommend that selection of urban planting species be based primarily on leaf traits. Further research into the vegetation structural features and standardization of the method to measure PM on leaves is needed. • Texture, wax or high-density trichomes are considered effective leaf traits for PM capture. • Comparative studies among plant species reveal substantial variation in PM capture. • The most efficient species for PM removal differs among research contexts. • Botanical features and local weather should be part of planning urban plantings. There is some consensus that coniferous needle leaves; small, rough and textured broadleaves; extended oval shapes; waxy coatings and high-density trichomes are traits considered to be effective in retaining particulate matter." @default.
- W3106937308 created "2020-12-07" @default.
- W3106937308 creator A5008663532 @default.
- W3106937308 creator A5036665131 @default.
- W3106937308 creator A5043763442 @default.
- W3106937308 creator A5078076463 @default.
- W3106937308 creator A5084151413 @default.
- W3106937308 date "2021-01-01" @default.
- W3106937308 modified "2023-09-29" @default.
- W3106937308 title "A systematic review of the leaf traits considered to contribute to removal of airborne particulate matter pollution in urban areas" @default.
- W3106937308 cites W1591612295 @default.
- W3106937308 cites W1662152815 @default.
- W3106937308 cites W1864904040 @default.
- W3106937308 cites W1967319203 @default.
- W3106937308 cites W1967504029 @default.
- W3106937308 cites W1970128855 @default.
- W3106937308 cites W1974518057 @default.
- W3106937308 cites W1975967161 @default.
- W3106937308 cites W1986452213 @default.
- W3106937308 cites W2006983345 @default.
- W3106937308 cites W2007837857 @default.
- W3106937308 cites W2016075304 @default.
- W3106937308 cites W2031685448 @default.
- W3106937308 cites W2032950028 @default.
- W3106937308 cites W2037409941 @default.
- W3106937308 cites W2037813284 @default.
- W3106937308 cites W2054410440 @default.
- W3106937308 cites W2055012766 @default.
- W3106937308 cites W2060962626 @default.
- W3106937308 cites W2065536826 @default.
- W3106937308 cites W2080373001 @default.
- W3106937308 cites W2085418863 @default.
- W3106937308 cites W2087159480 @default.
- W3106937308 cites W2088796480 @default.
- W3106937308 cites W2095802447 @default.
- W3106937308 cites W2111841011 @default.
- W3106937308 cites W2113420591 @default.
- W3106937308 cites W2115493329 @default.
- W3106937308 cites W2115959469 @default.
- W3106937308 cites W2156952267 @default.
- W3106937308 cites W2166549765 @default.
- W3106937308 cites W2168524427 @default.
- W3106937308 cites W2188360170 @default.
- W3106937308 cites W2267550207 @default.
- W3106937308 cites W2290048685 @default.
- W3106937308 cites W2414186644 @default.
- W3106937308 cites W2514670304 @default.
- W3106937308 cites W2526072285 @default.
- W3106937308 cites W2530830649 @default.
- W3106937308 cites W2600425237 @default.
- W3106937308 cites W2623172219 @default.
- W3106937308 cites W2719044653 @default.
- W3106937308 cites W2736735597 @default.
- W3106937308 cites W2737208368 @default.
- W3106937308 cites W2740912934 @default.
- W3106937308 cites W2753427842 @default.
- W3106937308 cites W2765793292 @default.
- W3106937308 cites W2765841114 @default.
- W3106937308 cites W2768063022 @default.
- W3106937308 cites W2793277803 @default.
- W3106937308 cites W2802342976 @default.
- W3106937308 cites W2802975942 @default.
- W3106937308 cites W2809404241 @default.
- W3106937308 cites W2896435101 @default.
- W3106937308 cites W2909533491 @default.
- W3106937308 cites W2934400141 @default.
- W3106937308 cites W2938688612 @default.
- W3106937308 cites W3010624272 @default.
- W3106937308 cites W4294215472 @default.
- W3106937308 cites W643965741 @default.
- W3106937308 doi "https://doi.org/10.1016/j.envpol.2020.116104" @default.
- W3106937308 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33339707" @default.
- W3106937308 hasPublicationYear "2021" @default.
- W3106937308 type Work @default.
- W3106937308 sameAs 3106937308 @default.
- W3106937308 citedByCount "38" @default.
- W3106937308 countsByYear W31069373082021 @default.
- W3106937308 countsByYear W31069373082022 @default.
- W3106937308 countsByYear W31069373082023 @default.
- W3106937308 crossrefType "journal-article" @default.
- W3106937308 hasAuthorship W3106937308A5008663532 @default.
- W3106937308 hasAuthorship W3106937308A5036665131 @default.
- W3106937308 hasAuthorship W3106937308A5043763442 @default.
- W3106937308 hasAuthorship W3106937308A5078076463 @default.
- W3106937308 hasAuthorship W3106937308A5084151413 @default.
- W3106937308 hasConcept C101000010 @default.
- W3106937308 hasConcept C106934330 @default.
- W3106937308 hasConcept C142724271 @default.
- W3106937308 hasConcept C183688256 @default.
- W3106937308 hasConcept C18903297 @default.
- W3106937308 hasConcept C199360897 @default.
- W3106937308 hasConcept C205649164 @default.
- W3106937308 hasConcept C24245907 @default.
- W3106937308 hasConcept C2776133958 @default.
- W3106937308 hasConcept C2776615292 @default.
- W3106937308 hasConcept C39432304 @default.
- W3106937308 hasConcept C41008148 @default.
- W3106937308 hasConcept C559116025 @default.