Matches in SemOpenAlex for { <https://semopenalex.org/work/W3106944832> ?p ?o ?g. }
- W3106944832 endingPage "1424" @default.
- W3106944832 startingPage "1409" @default.
- W3106944832 abstract "Purpose The increasing complexity of industrial systems is at the heart of the development of many fault diagnosis methods. The artificial neural networks (ANNs), which are part of these methods, are widely used in fault diagnosis due to their flexibility and diversification which makes them one of the most appropriate fault diagnosis methods. The purpose of this paper is to detect and locate in real time any parameter deviations that can affect the operation of the blowout preventer (BOP) system using ANNs. Design/methodology/approach The starting data are extracted from the tables of the HAZOP (HAZard and OPerability) method where the deviations of the parameters of normal BOP operating (pressure, flow, level and temperature) are associated with an initial rule base for establishing cause and effect of relationships between the causes of deviations and their consequences; these data are used as a database for the neural network. Three ANNs were used, the multi-layer perceptron network (MLPN), radial basis functions network (RBFN) and generalized regression neural networks (GRNN). These models were trained and tested, then, their comparative performances were presented. The respective performances of these models are highlighted following their application to the BOP system. Findings The performances of the models are evaluated using determination coefficient (R2), root mean square error (RMSE) and mean absolute error (MAE) statistics and time execution. The results of this study show that the RMSE, MAE and R2 values of the GRNN model are better than those corresponding to the RBFN and MLPN models. The GRNN model can be applied with better performance, to establish a diagnostic model that can detect and to identify the different causes of deviations in the parameters of the BOP system. Originality/value The performance of the trained network is found to be satisfactory for the real-time fault diagnosis. Therefore, future studies on modeling the BOP system with soft computing techniques can be concentrated on the ANNs. Consequently, with the use of these techniques, the performance of the BOP system can be ensured performing only a limited number of monitoring operations, thus saving engineering effort, time and funds." @default.
- W3106944832 created "2020-12-07" @default.
- W3106944832 creator A5015148778 @default.
- W3106944832 creator A5046389848 @default.
- W3106944832 creator A5049498522 @default.
- W3106944832 creator A5079382802 @default.
- W3106944832 date "2020-11-27" @default.
- W3106944832 modified "2023-09-30" @default.
- W3106944832 title "Fault diagnosis of blowout preventer system using artificial neural networks: a comparative study" @default.
- W3106944832 cites W1800571219 @default.
- W3106944832 cites W1965491739 @default.
- W3106944832 cites W1971802600 @default.
- W3106944832 cites W1979140003 @default.
- W3106944832 cites W1982291815 @default.
- W3106944832 cites W1992143385 @default.
- W3106944832 cites W2004823492 @default.
- W3106944832 cites W2009812227 @default.
- W3106944832 cites W2015109197 @default.
- W3106944832 cites W2017508725 @default.
- W3106944832 cites W2025977267 @default.
- W3106944832 cites W2029311698 @default.
- W3106944832 cites W2030154901 @default.
- W3106944832 cites W2032547220 @default.
- W3106944832 cites W2047884674 @default.
- W3106944832 cites W2056518122 @default.
- W3106944832 cites W2066736580 @default.
- W3106944832 cites W2068425358 @default.
- W3106944832 cites W2071497693 @default.
- W3106944832 cites W2072857564 @default.
- W3106944832 cites W2078365611 @default.
- W3106944832 cites W2088932912 @default.
- W3106944832 cites W2092925489 @default.
- W3106944832 cites W2127192673 @default.
- W3106944832 cites W2149723649 @default.
- W3106944832 cites W2149854044 @default.
- W3106944832 cites W2170423728 @default.
- W3106944832 cites W2174980551 @default.
- W3106944832 cites W2188277715 @default.
- W3106944832 cites W2192695509 @default.
- W3106944832 cites W2298091758 @default.
- W3106944832 cites W2328678893 @default.
- W3106944832 cites W2338227759 @default.
- W3106944832 cites W2343071504 @default.
- W3106944832 cites W2347027361 @default.
- W3106944832 cites W2416270402 @default.
- W3106944832 cites W2491646000 @default.
- W3106944832 cites W2526286107 @default.
- W3106944832 cites W2549957027 @default.
- W3106944832 cites W2569885513 @default.
- W3106944832 cites W2739428828 @default.
- W3106944832 cites W2745255487 @default.
- W3106944832 cites W2751410414 @default.
- W3106944832 cites W2763310144 @default.
- W3106944832 cites W2888300933 @default.
- W3106944832 cites W2897347239 @default.
- W3106944832 cites W2898595828 @default.
- W3106944832 cites W2922722781 @default.
- W3106944832 cites W3016650111 @default.
- W3106944832 cites W3034780765 @default.
- W3106944832 cites W874225101 @default.
- W3106944832 cites W2007860376 @default.
- W3106944832 doi "https://doi.org/10.1108/ijqrm-07-2019-0249" @default.
- W3106944832 hasPublicationYear "2020" @default.
- W3106944832 type Work @default.
- W3106944832 sameAs 3106944832 @default.
- W3106944832 citedByCount "5" @default.
- W3106944832 countsByYear W31069448322022 @default.
- W3106944832 crossrefType "journal-article" @default.
- W3106944832 hasAuthorship W3106944832A5015148778 @default.
- W3106944832 hasAuthorship W3106944832A5046389848 @default.
- W3106944832 hasAuthorship W3106944832A5049498522 @default.
- W3106944832 hasAuthorship W3106944832A5079382802 @default.
- W3106944832 hasConcept C105795698 @default.
- W3106944832 hasConcept C124101348 @default.
- W3106944832 hasConcept C125174871 @default.
- W3106944832 hasConcept C126231374 @default.
- W3106944832 hasConcept C127313418 @default.
- W3106944832 hasConcept C127413603 @default.
- W3106944832 hasConcept C139945424 @default.
- W3106944832 hasConcept C154945302 @default.
- W3106944832 hasConcept C165205528 @default.
- W3106944832 hasConcept C175551986 @default.
- W3106944832 hasConcept C179717631 @default.
- W3106944832 hasConcept C200601418 @default.
- W3106944832 hasConcept C33923547 @default.
- W3106944832 hasConcept C41008148 @default.
- W3106944832 hasConcept C50644808 @default.
- W3106944832 hasConcept C60908668 @default.
- W3106944832 hasConceptScore W3106944832C105795698 @default.
- W3106944832 hasConceptScore W3106944832C124101348 @default.
- W3106944832 hasConceptScore W3106944832C125174871 @default.
- W3106944832 hasConceptScore W3106944832C126231374 @default.
- W3106944832 hasConceptScore W3106944832C127313418 @default.
- W3106944832 hasConceptScore W3106944832C127413603 @default.
- W3106944832 hasConceptScore W3106944832C139945424 @default.
- W3106944832 hasConceptScore W3106944832C154945302 @default.
- W3106944832 hasConceptScore W3106944832C165205528 @default.
- W3106944832 hasConceptScore W3106944832C175551986 @default.