Matches in SemOpenAlex for { <https://semopenalex.org/work/W3106946587> ?p ?o ?g. }
- W3106946587 abstract "Coronavirus disease 2019 (COVID-19) has developed into a global pandemic, affecting every nation and territory in the world. Machine learning-based approaches are useful when trying to understand the complexity behind the spread of the disease and how to contain its spread effectively. The unsupervised learning method could be useful to evaluate the shortcomings of health facilities in areas of increased infection as well as what strategies are necessary to prevent disease spread within or outside of the country. To contribute toward the well-being of society, this paper focusses on the implementation of machine learning techniques for identifying common prevailing public health care facilities and concerns related to COVID-19 as well as attitudes to infection prevention strategies held by people from different countries concerning the current pandemic situation. Regression tree, random forest, cluster analysis and principal component machine learning techniques are used to analyze the global COVID-19 data of 133 countries obtained from the Worldometer website as of April 17, 2020. The analysis revealed that there are four major clusters among the countries. Eight countries having the highest cumulative infected cases and deaths, forming the first cluster. Seven countries, United States, Spain, Italy, France, Germany, United Kingdom, and Iran, play a vital role in explaining the 60% variation of the total variations by us of the first component characterized by all variables except for the rate variables. The remaining countries explain only 20% of the variation of the total variation by use of the second component characterized by only rate variables. Most strikingly, the analysis found that the variable number of tests by the country did not play a vital role in the prediction of the cumulative number of confirmed cases." @default.
- W3106946587 created "2020-12-07" @default.
- W3106946587 creator A5063245788 @default.
- W3106946587 creator A5064463014 @default.
- W3106946587 date "2020-11-23" @default.
- W3106946587 modified "2023-09-25" @default.
- W3106946587 title "Machine Learning Approaches Reveal That the Number of Tests Do Not Matter to the Prediction of Global Confirmed COVID-19 Cases" @default.
- W3106946587 cites W2032997274 @default.
- W3106946587 cites W2913732814 @default.
- W3106946587 cites W2949754992 @default.
- W3106946587 cites W2999409984 @default.
- W3106946587 cites W3001195213 @default.
- W3106946587 cites W3003668884 @default.
- W3106946587 cites W3006028741 @default.
- W3106946587 cites W3008401431 @default.
- W3106946587 cites W3009557552 @default.
- W3106946587 cites W3011414569 @default.
- W3106946587 cites W3011970808 @default.
- W3106946587 cites W3012054129 @default.
- W3106946587 cites W3013073448 @default.
- W3106946587 cites W3014604938 @default.
- W3106946587 cites W3016488464 @default.
- W3106946587 cites W3017053225 @default.
- W3106946587 cites W3019099014 @default.
- W3106946587 cites W3019768013 @default.
- W3106946587 cites W3020914381 @default.
- W3106946587 cites W3022420654 @default.
- W3106946587 cites W3029060068 @default.
- W3106946587 cites W3086039674 @default.
- W3106946587 doi "https://doi.org/10.3389/frai.2020.561801" @default.
- W3106946587 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7971514" @default.
- W3106946587 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33748745" @default.
- W3106946587 hasPublicationYear "2020" @default.
- W3106946587 type Work @default.
- W3106946587 sameAs 3106946587 @default.
- W3106946587 citedByCount "4" @default.
- W3106946587 countsByYear W31069465872022 @default.
- W3106946587 countsByYear W31069465872023 @default.
- W3106946587 crossrefType "journal-article" @default.
- W3106946587 hasAuthorship W3106946587A5063245788 @default.
- W3106946587 hasAuthorship W3106946587A5064463014 @default.
- W3106946587 hasBestOaLocation W31069465871 @default.
- W3106946587 hasConcept C119857082 @default.
- W3106946587 hasConcept C121332964 @default.
- W3106946587 hasConcept C138816342 @default.
- W3106946587 hasConcept C142724271 @default.
- W3106946587 hasConcept C144024400 @default.
- W3106946587 hasConcept C149923435 @default.
- W3106946587 hasConcept C152877465 @default.
- W3106946587 hasConcept C154945302 @default.
- W3106946587 hasConcept C159110408 @default.
- W3106946587 hasConcept C164866538 @default.
- W3106946587 hasConcept C169258074 @default.
- W3106946587 hasConcept C199360897 @default.
- W3106946587 hasConcept C205649164 @default.
- W3106946587 hasConcept C27438332 @default.
- W3106946587 hasConcept C2778334786 @default.
- W3106946587 hasConcept C2779134260 @default.
- W3106946587 hasConcept C3008058167 @default.
- W3106946587 hasConcept C41008148 @default.
- W3106946587 hasConcept C44870925 @default.
- W3106946587 hasConcept C524204448 @default.
- W3106946587 hasConcept C71924100 @default.
- W3106946587 hasConcept C89623803 @default.
- W3106946587 hasConceptScore W3106946587C119857082 @default.
- W3106946587 hasConceptScore W3106946587C121332964 @default.
- W3106946587 hasConceptScore W3106946587C138816342 @default.
- W3106946587 hasConceptScore W3106946587C142724271 @default.
- W3106946587 hasConceptScore W3106946587C144024400 @default.
- W3106946587 hasConceptScore W3106946587C149923435 @default.
- W3106946587 hasConceptScore W3106946587C152877465 @default.
- W3106946587 hasConceptScore W3106946587C154945302 @default.
- W3106946587 hasConceptScore W3106946587C159110408 @default.
- W3106946587 hasConceptScore W3106946587C164866538 @default.
- W3106946587 hasConceptScore W3106946587C169258074 @default.
- W3106946587 hasConceptScore W3106946587C199360897 @default.
- W3106946587 hasConceptScore W3106946587C205649164 @default.
- W3106946587 hasConceptScore W3106946587C27438332 @default.
- W3106946587 hasConceptScore W3106946587C2778334786 @default.
- W3106946587 hasConceptScore W3106946587C2779134260 @default.
- W3106946587 hasConceptScore W3106946587C3008058167 @default.
- W3106946587 hasConceptScore W3106946587C41008148 @default.
- W3106946587 hasConceptScore W3106946587C44870925 @default.
- W3106946587 hasConceptScore W3106946587C524204448 @default.
- W3106946587 hasConceptScore W3106946587C71924100 @default.
- W3106946587 hasConceptScore W3106946587C89623803 @default.
- W3106946587 hasLocation W31069465871 @default.
- W3106946587 hasLocation W31069465872 @default.
- W3106946587 hasOpenAccess W3106946587 @default.
- W3106946587 hasPrimaryLocation W31069465871 @default.
- W3106946587 hasRelatedWork W2911455822 @default.
- W3106946587 hasRelatedWork W3018959556 @default.
- W3106946587 hasRelatedWork W3174196512 @default.
- W3106946587 hasRelatedWork W3211546796 @default.
- W3106946587 hasRelatedWork W4281560664 @default.
- W3106946587 hasRelatedWork W4281616679 @default.
- W3106946587 hasRelatedWork W4293525103 @default.
- W3106946587 hasRelatedWork W4308191010 @default.
- W3106946587 hasRelatedWork W4318350883 @default.
- W3106946587 hasRelatedWork W4323021782 @default.